【題目】如圖,在⊙O中,CD分別為半徑OB,弦AB的中點(diǎn),連接CD并延長(zhǎng),交過(guò)點(diǎn)A的切線于點(diǎn)E

1)求證:AECE

2)若AE2,sinADE,求⊙O半徑的長(zhǎng).

【答案】1)見(jiàn)解析;(2

【解析】

1)連接OA,如圖,利用切線的性質(zhì)得∠OAE=90°,再證明CD為△AOB的中位線得到CDOA.則可判斷AECE

2)連接OD,如圖,利用垂徑定理得到ODAB,再在RtAED中利用正弦定義計(jì)算出AD=3,接著證明∠OAD=ADE.從而在RtOAD中有sinOAD=,設(shè)OD=x,則OA=3x,利用勾股定理可計(jì)算出AD=2x,從而得到2x=3,然后解方程求出x即可得到⊙O的半徑長(zhǎng).

1)證明:如圖, 連接OA

AE是⊙O的切線,

AEAO

∴∠OAE90°

C,D分別為半徑OB,弦AB的中點(diǎn),

CD為△AOB的中位線

CDOA

∴∠E90°

AECE;

2)解:如圖,連接OD,

ADBD,

ODAB

∴∠ODA90°

RtAED中,sinADE,

AD6

CDOA

∴∠OAD=∠ADE

RtOAD中,sinOAD

設(shè)ODx,則OA3x,

,解得x

OA3x,

OB長(zhǎng)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)實(shí)踐小組想利用鏡子的反射測(cè)量池塘邊一棵樹(shù)的高度AB.測(cè)量和計(jì)算的部分步驟如下:

①如圖,樹(shù)與地面垂直,在地面上的點(diǎn)C處放置一塊鏡子,小明站在BC的延長(zhǎng)線上,當(dāng)小明在鏡子中剛好看到樹(shù)的頂點(diǎn)A時(shí),測(cè)得小明到鏡子的距離CD2米,小明的眼睛E到地面的距離ED1.5米;

②將鏡子從點(diǎn)C沿BC的延長(zhǎng)線向后移動(dòng)10米到點(diǎn)F處,小明向后移動(dòng)到點(diǎn)H處時(shí),小明的眼睛G又剛好在鏡子中看到樹(shù)的頂點(diǎn)A,這時(shí)測(cè)得小明到鏡子的距離FH3米;

③計(jì)算樹(shù)的高度AB;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中, 點(diǎn)是平面內(nèi)不與點(diǎn)重合的任意一點(diǎn), 連接,將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到線段,連接

1)動(dòng)手操作

如圖1,當(dāng)時(shí),我們通過(guò)用 刻度尺和量角器度量發(fā)現(xiàn):

的值是;直線與直線相交所成的較小角的度數(shù)是;

請(qǐng)證明以上結(jié)論正確.

2)類比探究

如圖2,當(dāng)時(shí),請(qǐng)寫出的值及直線與直線相交所成的較小角的度數(shù),并就圖2的情形說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與實(shí)踐 中,,點(diǎn)為斜邊上的動(dòng)點(diǎn)(不與點(diǎn)重合)

1)操作發(fā)現(xiàn): 如圖①,當(dāng)時(shí),把線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到線段,連接

的度數(shù)為________

②當(dāng)________時(shí),四邊形為正方形;

2)探究證明: 如圖②,當(dāng)時(shí),把線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)后并延長(zhǎng)為原來(lái)的兩倍, 記為線段,連接

①在點(diǎn)的運(yùn)動(dòng)過(guò)程中,請(qǐng)判斷的大小關(guān)系,并證明;

②當(dāng)時(shí),求證:四邊形為矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB3DAB上的一點(diǎn)(不與點(diǎn)A、B重合),DEBC,交AC于點(diǎn)E,則的最大值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將沿著過(guò)中點(diǎn)的直線折疊,使點(diǎn)落在邊上的,稱為第次操作,折痕的距離記為;還原紙片后,再將沿著過(guò)中點(diǎn)的直線折疊,使點(diǎn)落在邊上的處,稱為第次操作,折痕的距離記為;按上述方法不斷操作下去…,經(jīng)過(guò)第次操作后得到的折痕,到的距離記為,若,則的值為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商品原價(jià)為100元,第一次漲價(jià),第二次在第一次的基礎(chǔ)上又漲價(jià),設(shè)平均每次增長(zhǎng)的百分?jǐn)?shù)為x,那么x應(yīng)滿足的方程是  

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是矩形,把矩形沿AC折疊,點(diǎn)B落在點(diǎn)E處,AEDC的交點(diǎn)為O,連接DE

(1)求證:ADE≌△CED;

(2)求證:DEAC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系 xOy 中,將點(diǎn) A2,4)向下平移 2 個(gè)單位得到點(diǎn) C,反比例函數(shù)y (m≠0)的圖象經(jīng)過(guò)點(diǎn) C,過(guò)點(diǎn) C CBx 軸于點(diǎn) B

1)求 m 的值;

2)一次函數(shù) y=kx+b(k<0)的圖象經(jīng)過(guò)點(diǎn) C,交 x 軸于點(diǎn) D 線段 CD,BDBC 圍成的區(qū)域(不含邊界)為 G; 若橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn)

b=3 時(shí),直接寫出區(qū)域 G 內(nèi)的整點(diǎn)個(gè)數(shù)

②若區(qū)域 G 內(nèi)沒(méi)有整點(diǎn),結(jié)合函數(shù)圖象,確定 k 的取值范圍

查看答案和解析>>

同步練習(xí)冊(cè)答案