【題目】如圖,某翼裝飛行員從離水平地面高AC=500m的A處出發(fā),沿著俯角為15°的方向,直線滑行1600米到達D點,然后打開降落傘以75°的俯角降落到地面上的B點.求他飛行的水平距離BC(結果精確到1m).

【答案】1575

【解析】如圖,過點DDE⊥AC,作DF⊥BC,垂足分別為E,F,

∵AC⊥BC四邊形ECFD是矩形,

∴ECDF

Rt△ADE中,∠ADE15°AD1600

∴AEAD·sin∠ADE1600sin15°,

DEAD·cos∠ADE1600cos15°,

∵ECACAE,∴EC5001600sin15°

Rt△DBF中,BFDF·tan∠FDBECtan15°

∴BCCFBF1600cos15°+(5001600sin15°·tan15°≈1575

運動員飛行的水平距離約為1575米.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】將代數(shù)式x2+10x+17化成(x+a2+b的形式為( 。

A.x+52+8B.x+528C.x52+10D.x+5210

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面四個數(shù)中比﹣5小的數(shù)是(
A.1
B.0
C.﹣4
D.﹣6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系內(nèi),點A-2,-3)在(

A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知小正方形ABCD的面積為1,把它的各邊延長一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1邊長按原法延長一倍得到正方形A2B2C2D2;以此下去…,則正方形A4B4C4D4的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某儲運站現(xiàn)有甲種貨物1530噸,乙種貨物1150噸,安排用一列貨車將這批貨物運往外地,這列貨車持AB兩種類型的貨廂共50節(jié)。已知甲種貨物35噸和乙種貨物15噸可裝滿一節(jié)A型貨廂,甲種貨物25噸和乙種貨物35噸可裝滿一節(jié)B型貨廂,問:該儲運站需配置AB兩種類型的貨廂各幾節(jié)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】矩形OABC的頂點A(-8,0)、C(0,6),點D是BC邊上的中點,拋物線y=ax2+bx經(jīng)過A、D兩點,如圖所示.

(1)求點D關于y軸的對稱點D′的坐標及a、b的值;

(2)在y軸上取一點P,使PA+PD長度最短,求點P的坐標;

(3)將拋物線y=ax2+bx向下平移,記平移后點A的對應點為A1,點D的對應點為D1,當拋物線平移到某個位置時,恰好使得點O是y軸上到A1、D1兩點距離之和OA1+OD1最短的一點,求此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+2x經(jīng)過原點O,且與直線y=x﹣2交于B,C兩點.

(1)求拋物線的頂點A的坐標及點B,C的坐標;

(2)求證:∠ABC=90°;

(3)在直線BC上方的拋物線上是否存在點P,使△PBC的面積最大?若存在,請求出點P的坐標;若不存在,請說明理由;

(4)若點N為x軸上的一個動點,過點N作MN⊥x軸與拋物線交于點M,則是否存在以O,M,N為頂點的三角形與△ABC相似?若存在,請求出點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】看圖填空:

(1)1和∠3是直線________被直線____所截得的______;

(2)1和∠4是直線_________被直線____所截得的______;

(3)B和∠2是直線_________被直線_____所截得的______;

(4)B和∠4是直線_________被直線_____所截得的_______

查看答案和解析>>

同步練習冊答案