【題目】某水果店出售一種水果,每只定價20元時,每周可賣出300只.試銷發(fā)現(xiàn):
①每只水果每降價1元,每周可多賣出25只;
②每只水果每漲價1元,每周將少賣出10只;
③水果定價不能低于18元.
我們知道,銷售收入=銷售單價×銷售量,設(shè)降價出售時的銷售收入為y1元,漲價出售時的銷售收入為y2元,水果的定價為x元/只.
根據(jù)以上信息,回答下列問題:
(1)請直接寫出y1、y2與x的函數(shù)關(guān)系式,并寫出x的取值范圍;
y1= ;y2= ;
(2)你認(rèn)為應(yīng)當(dāng)如何定價才能使一周的銷售收入最多?請說明理由.
【答案】(1)y1=(18≤x≤20),y2=(x≥20);(2)該水果應(yīng)降價銷售,當(dāng)定價為18元每千克時,銷售收入最多.
【解析】分析:(1)設(shè)售價為x元,根據(jù)銷售量=原來銷售量±增加(減少)銷售量,就可以表示出y1、y2與x之間案的關(guān)系式;(2)根據(jù)銷售收入=售價×數(shù)量就可以表示出y1、y2與x之間的關(guān)系式,由函數(shù)的性質(zhì)就可以得出結(jié)論.
本題解析:
解:(1)y1=(18≤x≤20)
y2= (x≥20)
(2)由(1)可得:y1=
∵18≤x≤20
∴y1最大值=
y2=
∵x≥20
y2最大值=
∴6300>6250
∴該水果應(yīng)降價銷售,當(dāng)定價為18元每千克時,銷售收入最多.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作半圓O,交BC于點D,連接AD,過點D作DE⊥AC,垂足為點E,交AB的延長線于點F.
(1)求證:EF是⊙O的切線.
(2)如果⊙O的半徑為5,sin∠ADE=,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三人站成一橫排照相,因甲、乙兩人是好友,照相時兩人緊鄰著站在一起不分開.
(1)請按左、中、右的順序列出所有符合要求的站位的結(jié)果;
(2)按要求隨機(jī)的站立,求丙站在甲左邊的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點A,B在反比例函數(shù)(x>0)的圖象上,它們的橫坐標(biāo)分別為m,n,且m≠n,過點A,點B都向x軸,y軸作垂線段,其中兩條垂線段的交點為C.
(1)如圖,當(dāng)m=2,n=6時,直接寫出點C的坐標(biāo):
(2)若A(m,n),B(n,m).連接OA、OB、AB,求△AOB的面積:(用含m的代數(shù)式表示)
(3)設(shè)AD⊥y軸于點D,BE⊥x軸于點E.若,且,則當(dāng)點C在直線DE上時,求p的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是用棋子擺成的“Τ”字圖案.從圖案中可以看出,第1個“Τ”字型圖案需要5枚棋子.第2個“Τ”字型圖案需要8枚棋子.第3個“Τ”字型圖案需要11枚棋子,則第n個“Τ”字型所需棋子的個數(shù)( )
A.2n+3 B.3n+2 C.3n+4 D.3n+5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C為⊙O上一點,AE和過點C的切線互相垂直,垂足為E,AE交⊙O于點D,直線EC交AB的延長線于點P,連接AC,BC.
(1)求證:AC平分∠BAD;
(2)若AB=6,AC=4,求EC和PB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=x2+(k-1)x-2k-3.
(1)求證:該二次函數(shù)圖像與x軸總有兩個公共點;
(2)若點A(-1,y1)、B(1,y2)在該二次函數(shù)的圖像上,且y1>y2,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某射擊隊為從甲、乙兩名運動員中選拔一人參加全國比賽,對他們進(jìn)行了8次測試,測試成績(單位:環(huán))如下表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 第七次 | 第八次 | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 | 10 | 8 |
乙 | 10 | 7 | 10 | 10 | 9 | 8 | 8 | 10 |
(1)根據(jù)表格中的數(shù)據(jù),計算出甲的平均成績是 環(huán),乙的平均成績是 環(huán);
(2)分別計算甲、乙兩名運動員8次測試成績的方差;
(3)根據(jù)(1)(2)計算的結(jié)果,你認(rèn)為推薦誰參加全國比賽更合適,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com