【題目】已知:如圖1,DE∥AB,DF∥AC.
(1)求證:∠A=∠EDF.
(2)點(diǎn)G是線段AC上的一點(diǎn),連接FG,DG.
①若點(diǎn)G是線段AE的中點(diǎn),請你在圖2中補(bǔ)全圖形,判斷∠AFG,∠EDG,∠DGF之間的數(shù)量關(guān)系,并證明.
②若點(diǎn)G是線段EC上的一點(diǎn),請你直接寫出∠AFG,∠EDG,∠DGF之間的數(shù)量關(guān)系.
【答案】(1)見解析;(2)①見解析;②見解析.
【解析】
(1)依據(jù)DE∥AB,DF∥AC,可得∠EDF+∠AFD=180°,∠A+∠AFD=180°,進(jìn)而得出∠EDF=∠A;
(2)①過G作GH∥AB,依據(jù)平行線的性質(zhì),即可得到∠AFG+∠EDG=∠FGH+∠DGH=∠DGF;②過G作GH∥AB,依據(jù)平行線的性質(zhì),即可得到∠AFG-∠EDG=∠FGH-∠DGH=∠DGF.
解:(1)∵DE∥AB,DF∥AC,
∴∠EDF+∠AFD=180°,∠A+∠AFD=180°,
∴∠EDF=∠A;
(2)①∠AFG+∠EDG=∠DGF.
如圖2所示,過G作GH∥AB,
∵AB∥DE,
∴GH∥DE,
∴∠AFG=∠FGH,∠EDG=∠DGH,
∴∠AFG+∠EDG=∠FGH+∠DGH=∠DGF;
②∠AFG-∠EDG=∠DGF.
如圖所示,過G作GH∥AB,
∵AB∥DE,
∴GH∥DE,
∴∠AFG=∠FGH,∠EDG=∠DGH,
∴∠AFG-∠EDG=∠FGH-∠DGH=∠DGF.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,點(diǎn)C在∠AOB的一邊OA上,過點(diǎn)C的直線DE∥OB,CF平分∠ACD,CG⊥CF于點(diǎn)C.
(1)若∠O=40°,求∠ECF的度數(shù);
(2)求證:CG平分∠OCD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在三角形ABC中,點(diǎn)D在BC上,DE⊥AB于E,點(diǎn)F在AB上,在CF的延長線上取一點(diǎn)G,連接AG.
(1)如圖1,若∠GAB=∠B,∠GAC+∠EDB=180°,求證:AB⊥AC.
(2)如圖2.在(1)的條件下,∠GAC的平分線交CG于點(diǎn)M,∠ACB的平分線交AB于點(diǎn)N,當(dāng)∠AMC∠ANC=35°時(shí),求∠AGC的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一塊長和寬分別為60厘米和40厘米的長方形鐵皮,要在它的四角截去四個(gè)相等的小正方形,折成一個(gè)無蓋的長方體水槽,使它的底面積為800平方厘米.求截去正方形的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】期中考試臨近,某校初二年級教師對復(fù)習(xí)課中學(xué)生參與的深度與廣度進(jìn)行評價(jià)調(diào)查,其評價(jià)項(xiàng)目為主動質(zhì)疑、獨(dú)立思考、專注聽講、講解題目四項(xiàng).評價(jià)組隨機(jī)抽取了若干名初中學(xué)生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖(均不完整),請根據(jù)圖中所給信息解答下列問題:
(1)在這次評價(jià)中,一共抽查了_________名學(xué)生;
(2)在扇形統(tǒng)計(jì)圖中,項(xiàng)目“主動質(zhì)疑”所在的扇形的圓心角的度數(shù)為______度;
(3)請將頻數(shù)分布直方圖補(bǔ)充完整;
(4)如果全市有8000名初二學(xué)生,那么在復(fù)習(xí)課中,“獨(dú)立思考”的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
小明在數(shù)學(xué)課外小組活動時(shí)遇到這樣一個(gè)問題:
如果一個(gè)不等式中含有絕對值,并且絕對值符號中含有未知數(shù),我們把這個(gè)不等式叫做絕對值不等式,求絕對值不等式|x|>3的解集.
小明同學(xué)的思路如下:
先根據(jù)絕對值的定義,求出|x|恰好是3時(shí)x的值,并在數(shù)軸上表示為點(diǎn)A,B,如圖所示.觀察數(shù)軸發(fā)現(xiàn),以點(diǎn)A,B為分界點(diǎn)把數(shù)軸分為三部分:
點(diǎn)A左邊的點(diǎn)表示的數(shù)的絕對值大于3;
點(diǎn)A,B之間的點(diǎn)表示的數(shù)的絕對值小于3;
點(diǎn)B右邊的點(diǎn)表示的數(shù)的絕對值大于3.
因此,小明得出結(jié)論絕對值不等式|x|>3的解集為:x<-3或x>3.
參照小明的思路,解決下列問題:
(1)請你直接寫出下列絕對值不等式的解集.
①|(zhì)x|>1的解集是 .
②|x|<2.5的解集是 .
(2)求絕對值不等式2|x-3|+5>13的解集.
(3)直接寫出不等式x2>4的解集是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D、F分別在AB、AC上,CF=CB,連接CD,將線段CD繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)90°后得CE,連接EF.
(1)求證:△BCD≌△FCE;
(2)若EF∥CD,求∠BDC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有兩個(gè)可以自由轉(zhuǎn)動的轉(zhuǎn)盤,每個(gè)轉(zhuǎn)盤分成三個(gè)相同的扇形,涂色情況如圖所示,指針的位置固定,同時(shí)轉(zhuǎn)動兩個(gè)轉(zhuǎn)盤,回答以下問題:
圓1 圓2
圓2 圓1 | |||
(1)補(bǔ)全表格:圓1的所有可能結(jié)果有 種,分別是 ;
圓2的所有可能結(jié)果有 種,分別是 .
(2)寫出:轉(zhuǎn)盤停止后指針指向同種顏色區(qū)域的概率和至少有一指針指向紅色區(qū)域的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題:
中華優(yōu)秀傳統(tǒng)文化是中華民族的“根”和“魂”.為傳承優(yōu)秀傳統(tǒng)文化,某校購進(jìn)《西游記》和《三國演義》若干套,其中每套《西游記》的價(jià)格比每套《三國演義》的價(jià)格多40元,用3200元購買《三國演義》的套數(shù)是用2400元購買《西游記》套數(shù)的2倍,求每套《三國演義》的價(jià)格.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com