【題目】已知:如圖1,DE∥AB,DF∥AC.

(1)求證:∠A=∠EDF.

(2)點(diǎn)G是線段AC上的一點(diǎn),連接FG,DG.

①若點(diǎn)G是線段AE的中點(diǎn),請你在圖2中補(bǔ)全圖形,判斷∠AFG,∠EDG,∠DGF之間的數(shù)量關(guān)系,并證明.

②若點(diǎn)G是線段EC上的一點(diǎn),請你直接寫出∠AFG,∠EDG,∠DGF之間的數(shù)量關(guān)系.

【答案】(1)見解析;(2)①見解析;②見解析.

【解析】

1)依據(jù)DEABDFAC,可得∠EDF+AFD=180°,∠A+AFD=180°,進(jìn)而得出∠EDF=A;
2)①過GGHAB,依據(jù)平行線的性質(zhì),即可得到∠AFG+EDG=FGH+DGH=DGF;②過GGHAB,依據(jù)平行線的性質(zhì),即可得到∠AFG-EDG=FGH-DGH=DGF

解:(1)∵DE∥AB,DF∥AC,

∴∠EDF+∠AFD=180°,∠A+∠AFD=180°,

∴∠EDF=∠A;

(2)①∠AFG+∠EDG=∠DGF.

如圖2所示,過G作GH∥AB,

∵AB∥DE,

∴GH∥DE,

∴∠AFG=∠FGH,∠EDG=∠DGH,

∴∠AFG+∠EDG=∠FGH+∠DGH=∠DGF;

②∠AFG-∠EDG=∠DGF.

如圖所示,過G作GH∥AB,

∵AB∥DE,

∴GH∥DE,

∴∠AFG=∠FGH,∠EDG=∠DGH,

∴∠AFG-∠EDG=∠FGH-∠DGH=∠DGF.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,點(diǎn)C在∠AOB的一邊OA上,過點(diǎn)C的直線DEOB,CF平分∠ACD,CGCF于點(diǎn)C

(1)若∠O40°,求∠ECF的度數(shù);

(2)求證:CG平分∠OCD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在三角形ABC中,點(diǎn)DBC上,DEABE,點(diǎn)FAB上,在CF的延長線上取一點(diǎn)G,連接AG.

(1)如圖1,若∠GAB=B,GAC+EDB=180°,求證:ABAC.

(2)如圖2.(1)的條件下,GAC的平分線交CG于點(diǎn)M,ACB的平分線交AB于點(diǎn)N,當(dāng)∠AMCANC=35°時(shí),求∠AGC的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一塊長和寬分別為60厘米和40厘米的長方形鐵皮,要在它的四角截去四個(gè)相等的小正方形,折成一個(gè)無蓋的長方體水槽,使它的底面積為800平方厘米.求截去正方形的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】期中考試臨近,某校初二年級教師對復(fù)習(xí)課中學(xué)生參與的深度與廣度進(jìn)行評價(jià)調(diào)查,其評價(jià)項(xiàng)目為主動質(zhì)疑、獨(dú)立思考、專注聽講、講解題目四項(xiàng).評價(jià)組隨機(jī)抽取了若干名初中學(xué)生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖(均不完整),請根據(jù)圖中所給信息解答下列問題:

1)在這次評價(jià)中,一共抽查了_________名學(xué)生;

2)在扇形統(tǒng)計(jì)圖中,項(xiàng)目主動質(zhì)疑所在的扇形的圓心角的度數(shù)為______度;

3)請將頻數(shù)分布直方圖補(bǔ)充完整;

4)如果全市有8000名初二學(xué)生,那么在復(fù)習(xí)課中,獨(dú)立思考的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

小明在數(shù)學(xué)課外小組活動時(shí)遇到這樣一個(gè)問題:

如果一個(gè)不等式中含有絕對值,并且絕對值符號中含有未知數(shù),我們把這個(gè)不等式叫做絕對值不等式,求絕對值不等式|x|>3的解集.

小明同學(xué)的思路如下:

先根據(jù)絕對值的定義,求出|x|恰好是3時(shí)x的值,并在數(shù)軸上表示為點(diǎn)A,B,如圖所示.觀察數(shù)軸發(fā)現(xiàn),以點(diǎn)A,B為分界點(diǎn)把數(shù)軸分為三部分:

點(diǎn)A左邊的點(diǎn)表示的數(shù)的絕對值大于3;

點(diǎn)A,B之間的點(diǎn)表示的數(shù)的絕對值小于3;

點(diǎn)B右邊的點(diǎn)表示的數(shù)的絕對值大于3.

因此,小明得出結(jié)論絕對值不等式|x|>3的解集為:x<-3或x>3.

參照小明的思路,解決下列問題:

(1)請你直接寫出下列絕對值不等式的解集.

①|(zhì)x|>1的解集是

②|x|<2.5的解集是

(2)求絕對值不等式2|x-3|+5>13的解集.

(3)直接寫出不等式x2>4的解集是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,ACB=90°,點(diǎn)D、F分別在AB、AC上,CF=CB,連接CD,將線段CD繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)90°后得CE,連接EF

(1)求證:BCD≌△FCE;

(2)若EFCD,求BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有兩個(gè)可以自由轉(zhuǎn)動的轉(zhuǎn)盤,每個(gè)轉(zhuǎn)盤分成三個(gè)相同的扇形,涂色情況如圖所示,指針的位置固定,同時(shí)轉(zhuǎn)動兩個(gè)轉(zhuǎn)盤,回答以下問題:

1 2

2

1

(1)補(bǔ)全表格:圓1的所有可能結(jié)果有 種,分別是 ;

圓2的所有可能結(jié)果有 種,分別是 .

(2)寫出:轉(zhuǎn)盤停止后指針指向同種顏色區(qū)域的概率和至少有一指針指向紅色區(qū)域的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題:

中華優(yōu)秀傳統(tǒng)文化是中華民族的“根”和“魂”.為傳承優(yōu)秀傳統(tǒng)文化,某校購進(jìn)《西游記》和《三國演義》若干套,其中每套《西游記》的價(jià)格比每套《三國演義》的價(jià)格多40元,用3200元購買《三國演義》的套數(shù)是用2400元購買《西游記》套數(shù)的2倍,求每套《三國演義》的價(jià)格.

查看答案和解析>>

同步練習(xí)冊答案