(2013•龍崗區(qū)模擬)在矩形ABCD中,∠BAD的平分線交直線BC于點(diǎn)E,交直線DC于點(diǎn)F,若G是EF的中點(diǎn),則∠BDG的正切值為
1
1
分析:根據(jù)矩形性質(zhì)得出∠BAD=∠DCB=∠ABE=90°,AB=DC,AD∥BC,求出DC=BE=AB,求出DF=BC,∠F=45°,求出CG=GF,證△DGF≌△BGC,推出∠BDG=∠F=45°,即可求出答案.
解答:解:連接CG,BG,
∵四邊形ABCD是矩形,
∴∠BAD=∠DCB=∠ABE=90°,AB=DC,AD∥BC,
∵AE平分∠DAB,
∴∠BAE=∠DAE=45°,
∴∠AEB=45°=∠BAE,
∵AB∥DC,
∴∠F=∠BAE=45°,
∴∠F=∠CEF,
∴CE=CF,
∵BE=DC,
∴DF=BC,
∵∠ECF=90°,CE=CF,G為EF中點(diǎn),
∴∠ECG=45°,CG=GE=GF,
∴∠ECG=∠F,
在△DGF和△BGC中
DF=BC
∠F=∠BCG
GF=CG

∴△DGF≌△BGC,
∴∠BDG=∠F=45°,
∴∠BDG的正切值為tan45°=1,
故答案為:1.
點(diǎn)評(píng):本題考查了矩形的性質(zhì),全等三角形的性質(zhì)和判定,等腰三角形的性質(zhì)和判定,直角三角形斜邊上中線性質(zhì)的應(yīng)用,綜合性比較強(qiáng),難度偏大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•龍崗區(qū)模擬)為了提高服務(wù)質(zhì)量,某賓館決定對(duì)甲、乙兩種套房進(jìn)行星級(jí)提升,已知甲種套房提升費(fèi)用比乙種套房提升費(fèi)用少3萬元,如果提升相同數(shù)量的套房,甲種套房費(fèi)用為625萬元,乙種套房費(fèi)用為700萬元.
(1)甲、乙兩種套房每套提升費(fèi)用各多少萬元?
(2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬元,但不超過2096萬元,且所籌資金全部用于甲、乙種套房星級(jí)提升,市政府對(duì)兩種套房的提升有幾種方案?那一種方案的提升費(fèi)用最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•龍崗區(qū)模擬)下列命題中正確的個(gè)數(shù)是( 。
①連接對(duì)角線相等且互相垂直的四邊形的中點(diǎn),所得到的圖形是正方形
②對(duì)角線相等且互相垂直的四邊形是正方形
③垂直于半徑的直線是圓的切線;
④平分弦的直徑垂直于弦.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•龍崗區(qū)模擬)如圖,四邊形ACDE、BAFG是以△ABC的邊AC、AB為邊向△ABC外所作的正方形.
求證:(1)EB=FC.
(2)EB⊥FC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•龍崗區(qū)模擬)為實(shí)現(xiàn)區(qū)域教育均衡發(fā)展,我市計(jì)劃對(duì)某縣A、B兩類薄弱學(xué)校全部進(jìn)行改造.根據(jù)預(yù)算,共需資金1560萬元.改造一所A類學(xué)校和兩所B類學(xué)校共需資金230萬元;改造兩所A類學(xué)校和一所B類學(xué)校共需資金205萬元.
(1)改造一所A類學(xué)校和一所B類學(xué)校所需的資金分別是多少萬元?
(2)若該縣的A類學(xué)校不超過9所,則B類學(xué)校至少有多少所?
(3)我市計(jì)劃今年對(duì)該縣A、B兩類學(xué)校共6所進(jìn)行改造,改造資金由國(guó)家財(cái)政和地方財(cái)政共同承擔(dān).若今年國(guó)家財(cái)政撥付的改造資金不超過400萬元;地方財(cái)政投入的改造資金不少于75萬元,其中地方財(cái)政投入到A、B兩類學(xué)校的改造資金分別為每所10萬元和15萬元.請(qǐng)你通過計(jì)算求出有幾種改造方案?

查看答案和解析>>

同步練習(xí)冊(cè)答案