【題目】已知:在平面直角坐標系中,△ABC的三個頂點的坐標分別為A(5,4),B(0,3),C(2,1).
(1)畫出△ABC關(guān)于原點成中心對稱的△A1B1C1,并寫出點C1的坐標;
(2)畫出將A1B1C1繞點C1按順時針旋轉(zhuǎn)90°所得的△A2B2C1.
【答案】(1)見解析;(2)見解析
【解析】
(1)分別找出點A、B、C關(guān)于原點的對稱點A1、B1、C1,然后連接A1B1,B1C1,A1C1即可,然后根據(jù)關(guān)于原點對稱的兩點坐標規(guī)律:橫、縱坐標均互為相反數(shù)即可求出點C1的坐標;
(2)分別將線段B1C1,A1C1繞點C1按順時針旋轉(zhuǎn)90°,得出B2C1,A2C1,然后連接B2A2即可.
(1)分別找出點A、B、C關(guān)于原點的對稱點A1、B1、C1,然后連接A1B1,B1C1,A1C1,如圖所示,△A1B1C1即為所求,
∵C(2,1)
∴點C1的坐標為(﹣2,﹣1).
(2)分別將線段B1C1,A1C1繞點C1按順時針旋轉(zhuǎn)90°,得出B2C1,A2C1,然后連接B2A2,如圖所示,△A2B2C1即為所求.
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩車分別從A、B兩地同時出發(fā),在同一條公路上,勻速行駛,相向而行,到兩車相遇時停止.甲車行駛一段時間后,因故停車0.5小時,故障解除后,繼續(xù)以原速向B地行駛,兩車之間的路程y(千米)與出發(fā)后所用時間x(小時)之間的函數(shù)關(guān)系如圖所示.
(1)求甲、乙兩車行駛的速度V甲、V乙.
(2)求m的值.
(3)若甲車沒有故障停車,求可以提前多長時間兩車相遇.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠ACB=90°,E為AB上一點,以AE為直徑作⊙O與BC相切于點D,連接ED并延長交AC的延長線于點F.
(1)求證:AE=AF;
(2)若AE=5,AC=4,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線y=x2+(k﹣1)x﹣k與直線y=kx+1交于A,B兩點,點A在點B的左側(cè).
(1)如圖1,當k=1時,直接寫出A,B兩點的坐標;
(2)在(1)的條件下,點P為拋物線上的一個動點,且在直線AB下方,試求出△ABP面積的最大值及此時點P的坐標;
(3)如圖2,拋物線y=x2+(k﹣1)x﹣k(k>0)與x軸交于點C、D兩點(點C在點D的左側(cè)),在直線y=kx+1上是否存在唯一一點Q,使得∠OQC=90°?若存在,請求出此時k的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,Rt△PAB的直角頂點P(3,4)在函數(shù)y=(x>0)的圖象上,頂點A、B在函數(shù)y=(x>0,0<t<k)的圖象上,PA∥x軸,連接OP,OA,記△OPA的面積為S△OPA,△PAB的面積為S△PAB,設(shè)w=S△OPA﹣S△PAB.
①求k的值以及w關(guān)于t的表達式;
②若用wmax和wmin分別表示函數(shù)w的最大值和最小值,令T=wmax+a2﹣a,其中a為實數(shù),求Tmin.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是一棵古樹,某校初四(1)班數(shù)學興趣小組的同學想利用所學知識測出這棵古樹的高,過程如下:在古樹同側(cè)的水平地面上,分別選取了C、D兩點(C、D兩點與古樹在同一直線上),用測角儀在C處測得古樹頂端A的仰角α=60°,在D處測得古樹頂端A的仰角β=30°,又測得C、D兩點相距14米.已知測角儀高為1.5米,請你根據(jù)他們所測得的數(shù)據(jù)求出古樹AB的高.(精確到0.1米,≈1.732)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,坡面CD的坡比為,坡頂?shù)钠降谺C上有一棵小樹AB,當太陽光線與水平線夾角成60°時,測得小樹的在坡頂平地上的樹影BC=3米,斜坡上的樹影CD=米,則小樹AB的高是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將線段 AB 先向右平移 5 個單位,再將所得線段繞原點按順時針方向旋轉(zhuǎn) 90°,得到線段 AB ,則點 B 的對應(yīng)點 B′的坐標是( )
A.(-4 , 1)B.( -1, 2)C.(4 ,- 1)D.(1 ,- 2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com