【題目】如圖1,點(diǎn)P為四邊形ABCD所在平面上的點(diǎn),如果∠PAD=PBC,則稱點(diǎn)P為四邊形ABCD關(guān)于A、B的等角點(diǎn),以點(diǎn)C為坐標(biāo)原點(diǎn),BC所在直線為軸建立平面直角坐標(biāo)系,點(diǎn)B的橫坐標(biāo)為﹣6

1)如圖2,若A、D兩點(diǎn)的坐標(biāo)分別為A﹣64)、D0,4),點(diǎn)PDC邊上,且點(diǎn)P為四邊形ABCD關(guān)于A、B的等角點(diǎn),則點(diǎn)P的坐標(biāo)為 _________ ;

2)如圖3,若AD兩點(diǎn)的坐標(biāo)分別為A﹣2,4)、D0,4).

①若PDC邊上時(shí),則四邊形ABCD關(guān)于AB的等角點(diǎn)P的坐標(biāo)為 _________ ;

②在①的條件下,將PB沿軸向右平移個(gè)單位長度(06)得到線段PB,連接PDBD,試用含的式子表示PD2+BD2,并求出使PD2+BD2取得最小值時(shí)點(diǎn)P的坐標(biāo);

③如圖4,若點(diǎn)P為四邊形ABCD關(guān)于A、B的等角點(diǎn),且點(diǎn)P坐標(biāo)為(1, ),求的值;

④以四邊形ABCD的一邊為邊畫四邊形,所畫的四邊形與四邊形ABCD有公共部分,若在所畫的四邊形內(nèi)存在一點(diǎn)P,使點(diǎn)P分別是各相鄰兩頂點(diǎn)的等角點(diǎn),且四對等角都相等,請直接寫出所有滿足條件的點(diǎn)P的坐標(biāo).

【答案】1)(0,2);(20,3);2m2-12m+53,(3,3);2.8;-13),(-22),(-3,3),(-2,0

【解析】試題分析:(1)連結(jié)APBP,由全等三角形的性質(zhì)就可以得出PD=PC而得出結(jié)論;

2ADP∽△BCP就可以得出而求出結(jié)論;

求出代表P′D2+B′D2的方程式,并求最小值.

畫圖求證△PAM∽△PBN,值得注意的是本題有兩個(gè)圖形,容易漏掉一個(gè)答案.

由題意可知,必須是正方形才能滿足題干要求.

試題解析:解:(1)由B點(diǎn)坐標(biāo)(﹣60),A點(diǎn)坐標(biāo)(﹣64)、D點(diǎn)坐標(biāo)(04),可以得出四邊形ABCD為矩形,

∵PCD邊上,且∠PAD=∠PBC,∠ADP=∠BCPBC=AD;

∴△ADP≌△BCP∴CP=DP,

∴P點(diǎn)坐標(biāo)為(0,2);

2①∵∠DAP=∠CBP,∠BCP=∠ADP=90°,

∴△ADP∽△BCP,

==

∴CP=3DP,∴CP=3DP=1,

∴P點(diǎn)坐標(biāo)為(0,3);

如圖3,由題意,易得 B′m﹣6,0),P′m,3

由勾股定理得P′D2+B′D2=PP′2+PD2+OD2+B′C2=m2+4﹣32+42+m﹣62=2m2﹣12m+53,

∵20

∴P′D2+B′D2有最小值,

當(dāng)m=﹣=3時(shí),(在0m6范圍內(nèi))時(shí),P′D2+B′D2有最小值,此時(shí)P′坐標(biāo)為(3,3);

由題意知,點(diǎn)P在直線x=1上,延長AD交直線x=1M

a)如圖,當(dāng)點(diǎn)P在線段MN上時(shí),易證△PAM∽△PBN,

,

解得t=28

(b)如圖,當(dāng)點(diǎn)PBA的延長線與直線x=1的交點(diǎn)時(shí),易證△PAM∽△PBN

,即,解得t=7

綜上可得,t=28t=7

因滿足題設(shè)條件的四邊形是正方形,

故所求P的坐標(biāo)為(﹣1,3),(﹣2,2),(﹣33),(﹣2,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,O為矩形ABCD對角線的交點(diǎn),DE∥AC,CE∥BD.

(1)試判斷四邊形OCED的形狀,并說明理由;

(2)若AB=3,BC=4,求四邊形OCED的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,ACBC,點(diǎn)DAB中點(diǎn).∠GDH90°,∠GDH繞點(diǎn)D旋轉(zhuǎn),DG,DH分別與邊ACBC交于E,F兩點(diǎn).下列結(jié)論:AE+BFACAE2+BF2EF2,S四邊形CEDFSABC,DEF始終為等腰直角三角形.其中正確的是(  )

A. ①②③④ B. ①②③ C. ①④ D. ②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,EF分別是矩形ABCD的邊AB、BC的中點(diǎn),連AF,CE,AF、CE交于G,則四邊形BEGF與四邊形ADCG的面積的比值為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC,AB=AC,以AB為直徑的O分別交AC、BC于點(diǎn)D、E,點(diǎn)F在AC的延長線上,且CAB=2CBF

(1)試判斷直線BF與O的位置關(guān)系,并說明理由;

(2)若AB=6,BF=8,求tanCBF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,經(jīng)過點(diǎn)A,C且與邊AECE分別交于點(diǎn)D,F,點(diǎn)B是弧AC上一點(diǎn),且弧BC,連接ABBC,CD

求證:

填空:若AC的直徑,則

當(dāng)的形狀為______時(shí),四邊形OCFD為菱形;

當(dāng)的形狀為______時(shí),四邊形ABCD為正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知雅美服裝廠現(xiàn)有A種布料70米,B種布料52米,現(xiàn)計(jì)劃用這兩種布料生產(chǎn)MN兩種型號的時(shí)裝共80套.已知做一套M型號的時(shí)裝需用A種布料1.1米,B種布料0.4米,可獲利50元;做一套N型號的時(shí)裝需用A種布料0.6米,B種布料0.9米,可獲利45元.設(shè)生產(chǎn)M型號的時(shí)裝套數(shù)為x,用這批布料生產(chǎn)兩種型號的時(shí)裝所獲得的總利潤為y元.

1)求y(元)與x(套)的函數(shù)關(guān)系式,并求出自變量的取值范圍;

2)當(dāng)M型號的時(shí)裝為多少套時(shí),能使該廠所獲利潤最大?最大利潤是多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若將一幅三角板按如圖所示的方式放置,則下列結(jié)論中不正確的是( )

A. 1=∠3 B. 如果∠230°,則有ACDE

C. 如果∠230°,則有BCAD D. 如果∠230°,必有∠4=∠C

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是以原點(diǎn)為圓心, 為半徑的圓,點(diǎn)P是直線y=﹣x+6上的一點(diǎn),過點(diǎn)P作⊙O的一條切線PQ,Q為切點(diǎn),則切線長PQ的最小值為______.

查看答案和解析>>

同步練習(xí)冊答案