【題目】如圖,正方形ABCD的邊長是3,BP=CQ,連接AQ,DP交于點(diǎn)O,并分別與邊CD,BC交于點(diǎn)F,E,連接AE,下列結(jié)論:①AQ⊥DP;②OA2=OEOP;③S△AOD=S四邊形OECF;④當(dāng)BP=1時(shí),tan∠OAE=,其中正確結(jié)論的個(gè)數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】∵四邊形ABCD是正方形,
∴AD=BC,∠DAB=∠ABC=90°,
∵BP=CQ,
∴AP=BQ,
在△DAP與△ABQ中, ,
∴△DAP≌△ABQ,
∴∠P=∠Q,
∵∠Q+∠QAB=90°,
∴∠P+∠QAB=90°,
∴∠AOP=90°,
∴AQ⊥DP;
故①正確;
∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,
∴∠DAO=∠P,
∴△DAO∽△APO,
∴ ,
∴AO2=ODOP,
∵AE>AB,
∴AE>AD,
∴OD≠OE,
∴OA2≠OEOP;故②錯(cuò)誤;
在△CQF與△BPE中 ,
∴△CQF≌△BPE,
∴CF=BE,
∴DF=CE,
在△ADF與△DCE中, ,
∴△ADF≌△DCE,
∴S△ADF﹣S△DFO=S△DCE﹣S△DOF,
即S△AOD=S四邊形OECF;故③正確;
∵BP=1,AB=3,
∴AP=4,
∵△AOP∽△DAP,
∴ ,
∴BE=,∴QE=,
∵△QOE∽△PAD,
∴ ,
∴QO=,OE=,
∴AO=5﹣QO=,
∴tan∠OAE==,故④正確,
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1), 已知△ABC中, ∠BAC=900, AB=AC, AE是過A的一條直線, 且B、C在A、E的異側(cè), BD⊥AE于D, CE⊥AE于E
(1)試說明: BD=DE+CE.
(2)若直線AE繞A點(diǎn)旋轉(zhuǎn)到圖(2)位置時(shí)(BD<CE), 其余條件不變, 問BD與DE、CE的關(guān)系如何? 為什么?
(3)若直線AE繞A點(diǎn)旋轉(zhuǎn)到圖(3)位置時(shí)(BD>CE), 其余條件不變, 問BD與DE、CE的關(guān)系如何? 請(qǐng) 直接寫出結(jié)果, 不需說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一只螞蟻在網(wǎng)格(每小格邊長為1)上沿著網(wǎng)格線運(yùn)動(dòng).它從格點(diǎn)處出發(fā)去看望格點(diǎn)B、C、D等處的螞蟻,規(guī)定:向上向右走均為正,向下向左走均為負(fù).如:從A到B記為:,從B到A記為:,其中第一個(gè)數(shù)表示左右方向,第二個(gè)數(shù)表示上下方向.
(1)填空:圖中,;
(2)若這只螞蟻從A處去M處的螞蟻的行走路線依次為,,,,則點(diǎn)M的坐標(biāo)為(________,________);
(3)若圖中另有兩個(gè)格點(diǎn)Р、Q,且,,則從Q到A記為________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將長方形ABCD沿著對(duì)角線BD折疊,使點(diǎn)C落在C'處,BC'交AD于點(diǎn)E.
(1)試判斷△BDE的形狀,并說明理由;
(2)若AB=6,AD=8,求△BDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:平面內(nèi)的直線l1與l2相交于點(diǎn)O,對(duì)于該平面內(nèi)任意一點(diǎn)M,點(diǎn)M到直線l1、l2的距離分別為a、b,則稱有序非負(fù)實(shí)數(shù)對(duì)(a,b)是點(diǎn)M的“距離坐標(biāo)”,根據(jù)上述定義,距離坐標(biāo)為(2,1)的點(diǎn)的個(gè)數(shù)有( 。
A. 2個(gè)B. 3個(gè)C. 4個(gè)D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,AD⊥BC,垂足為D.
(1)求作∠ABC的平分線,分別交AD,AC于P,Q兩點(diǎn);(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)證明AP=AQ.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=BC,點(diǎn)D在斜邊AB上,且AD=AC,過點(diǎn)B作BE⊥CD,交直線CD于點(diǎn)E.
(1)求∠BCD的度數(shù);
(2)作AF⊥CD于點(diǎn)F,求證:△AFD≌△CEB;
(3)請(qǐng)直接寫出CD與BE的數(shù)量關(guān)系(不需要證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,交于,平分交于,為延長線上一點(diǎn),交的延長線于,的延長線交于,連接,下列結(jié)論:①;②∠AGH=∠BAE+∠ACB;③,其中正確的結(jié)論有( )個(gè).
A.0B.1C.2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:四邊形ABCD是一張矩形紙片,AB=3cm,BC=5cm
(1)在矩形ABCD的邊AD上找一點(diǎn)E,使CE平分∠BED,請(qǐng)利用刻度尺或圓規(guī)作出點(diǎn)E,寫出作法,并給出證明;
(2)把矩形紙片沿某直線剪一刀分成兩部分后,再用這兩部分拼成一個(gè)菱形,請(qǐng)畫出剪拼的示意圖,并求出菱形的較長對(duì)角線的長度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com