【題目】如圖,已知ABCD的頂點(diǎn)A、C分別在直線x=2和x=5上,O是坐標(biāo)原點(diǎn),則對(duì)角線OB長(zhǎng)的最小值為 .
【答案】7
【解析】解:過(guò)點(diǎn)B作BD⊥直線x=5,交直線x=5于點(diǎn)D,過(guò)點(diǎn)B作BE⊥x軸,交x軸于點(diǎn)E,直線x=2與OC交于點(diǎn)M,與x軸交于點(diǎn)F,直線x=5與AB交于點(diǎn)N,如圖: ∵四邊形OABC是平行四邊形,
∴∠OAB=∠BCO,OC∥AB,OA=BC,
∵直線x=2與直線x=5均垂直于x軸,
∴AM∥CN,
∴四邊形ANCM是平行四邊形,
∴∠MAN=∠NCM,
∴∠OAF=∠BCD,
∵∠OFA=∠BDC=90°,
∴∠FOA=∠DBC,
在△OAF和△BCD中,
,
∴△OAF≌△BCD(ASA).
∴BD=OF=2,
∴OE=5+2=7,
∴OB= .
由于OE的長(zhǎng)不變,所以當(dāng)BE最小時(shí)(即B點(diǎn)在x軸上),OB取得最小值,最小值為OB=OE=7.
故答案為:7.
過(guò)點(diǎn)B作BD⊥直線x=5,交直線x=5于點(diǎn)D,過(guò)點(diǎn)B作BE⊥x軸,交x軸于點(diǎn)E.則由勾股定理可求出OB的長(zhǎng).由于四邊形OABC是平行四邊形,所以O(shè)A=BC,又由平行四邊形的性質(zhì)可推得∠OAF=∠BCD,則可證明△OAF≌△BCD,所以O(shè)E的長(zhǎng)固定不變,當(dāng)BE最小時(shí),OB取得最小值,從而可求.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a1 , a2 , …,a2017是從1,0,﹣1這三個(gè)數(shù)中取值的一列數(shù),若a1+a2+…+a2017=84,(a1+1)2+(a2+1)2+…+(a2017+1)2=4001,則a1 , a2 , …,a2017中為0的個(gè)數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為了節(jié)約用水,對(duì)自來(lái)水的收費(fèi)標(biāo)準(zhǔn)作如下規(guī)定:每月每戶用水不超過(guò)10噸的部分,按2元/噸收費(fèi);超過(guò)10噸的部分按2.5元/噸收費(fèi).
(1)若黃老師家5月份用水16噸,問(wèn)應(yīng)交水費(fèi)多少元?
(2)若黃老師家6月份交水費(fèi)30元,問(wèn)黃老師家5月份用水多少噸?
(3)若黃老師家7月用水a噸,問(wèn)應(yīng)交水費(fèi)多少元?(用a的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示中的幾個(gè)圖形是五角星和它的變形.
圖甲中是一個(gè)五角星形狀,求證:;
圖甲中的點(diǎn)A向下移到BE上時(shí)如圖乙五個(gè)角的和即有無(wú)變化?試說(shuō)明理由
把圖乙中的點(diǎn)C向上移動(dòng)到BD上時(shí)如圖丙所示,五個(gè)角的和即有無(wú)變化?試說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩名射擊運(yùn)動(dòng)員中進(jìn)行射擊比賽,兩人在相同條件下各射擊10次,射擊的成績(jī)?nèi)鐖D所示.
根據(jù)圖中信息,回答下列問(wèn)題:
(1)甲的平均數(shù)是___________,乙的中位數(shù)是______________;
(2)分別計(jì)算甲、乙成績(jī)的方差,并從計(jì)算結(jié)果來(lái)分析,你認(rèn)為哪位運(yùn)動(dòng)員的射擊成績(jī)更穩(wěn)定?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,邊AB的長(zhǎng)為3,點(diǎn)E,F(xiàn)分別在AD,BC上,連接BE,DF,EF,BD.若四邊形BEDF是菱形,且EF=AE+FC,則邊BC的長(zhǎng)為 ( )
A. B. 2 C. 3 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年G20杭州峰會(huì)期間,某志愿者小組有五名翻譯,其中一名只會(huì)翻譯法語(yǔ),三名只會(huì)翻譯英語(yǔ),還有一名兩種語(yǔ)言都會(huì)翻譯.若從中隨機(jī)挑選兩名組成一組,則該組能夠翻譯上述兩種語(yǔ)言的概率是多少?(請(qǐng)用“畫樹(shù)狀圖”的方法給出分析過(guò)程,并求出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上的任意一點(diǎn) (不與點(diǎn)A、B重合),連接CO并延長(zhǎng)CO交⊙O于點(diǎn)D,連接AD.
(1)弦長(zhǎng)AB等于(結(jié)果保留根號(hào));
(2)當(dāng)∠D=20°時(shí),求∠BOD的度數(shù);
(3)當(dāng)AC的長(zhǎng)度為多少時(shí),以A、C、D為頂點(diǎn)的三角形與以B、C、0為頂點(diǎn)的三角形相似?請(qǐng)寫出解答過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB與CD相交于O,OE⊥AB,OF⊥CD。
(1)圖中與∠COE互補(bǔ)的角是___________________; (把符合條件的角都寫出來(lái))
(2)如果∠AOC =∠EOF ,求∠AOC的度數(shù)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com