【題目】已知:如圖,在ABCD中,O為對(duì)角線BD的中點(diǎn),過點(diǎn)O的直線EF分別交AD,BC于E,F(xiàn)兩點(diǎn),連結(jié)BE,DF.
(1)求證:△DOE≌△BOF;
(2)當(dāng)∠DOE等于多少度時(shí),四邊形BFDE為菱形?請(qǐng)說明理由.
【答案】(1)證明見解析(2)∠DOE=90°,理由見解析
【解析】
試題分析:(1)利用平行四邊形的性質(zhì)以及全等三角形的判定方法得出△DOE≌△BOF(ASA);
(2)首先利用一組對(duì)邊平行且相等的四邊形是平行四邊形得出四邊形EBFD是平行四邊形,進(jìn)而利用垂直平分線的性質(zhì)得出BE=ED,即可得出答案.
(1)證明:∵在ABCD中,O為對(duì)角線BD的中點(diǎn),
∴BO=DO,∠EDB=∠FBO,
在△EOD和△FOB中
,
∴△DOE≌△BOF(ASA);
(2)解:當(dāng)∠DOE=90°時(shí),四邊形BFDE為菱形,
理由:∵△DOE≌△BOF,
∴OE=OF,
又∵OB=OD
∴四邊形EBFD是平行四邊形,
∵∠EOD=90°,
∴EF⊥BD,
∴四邊形BFDE為菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在方格紙內(nèi)將△ABC經(jīng)過一次平移后得到△A′B′C′,圖中標(biāo)出了點(diǎn)B的對(duì)應(yīng)點(diǎn)B′.根據(jù)下列條件,利用網(wǎng)格點(diǎn)和三角尺畫圖:
(1)補(bǔ)全△A′B′C′
(2)畫出AC邊上的中線BD;
(3)畫出AC邊上的高線BE;
(4)求△ABD的面積 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,將點(diǎn)A(3,4)繞原點(diǎn)旋轉(zhuǎn)90°得點(diǎn)B,則點(diǎn)B坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市初級(jí)中學(xué)為了了解中考體育科目的訓(xùn)練情況,從本校九年級(jí)學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行了一次中考體育科目測(cè)試(把測(cè)試結(jié)果分為四個(gè)等級(jí):A級(jí):優(yōu)秀;B級(jí):良好;C級(jí):及格;D級(jí):不及格),并將測(cè)試結(jié)果繪成如圖兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息解答下列問題:
(1)本次抽測(cè)的學(xué)生人數(shù)是 .
(2)圖1中A級(jí)所在扇形的圓心角為 .并把圖2中條形統(tǒng)計(jì)圖補(bǔ)充完整.
(3)該校九年級(jí)共有學(xué)生1500人,如果全部參加這次中考體育科目測(cè)試,請(qǐng)估計(jì)不及格的人數(shù)為 .
(4)請(qǐng)你根據(jù)測(cè)試成績提一條合理化的建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)在如圖所示的平面直角坐標(biāo)系中表示下面各點(diǎn):
A(0,3);B(5,0);C(3,﹣5);D(﹣3,﹣5);E(3,5);
(2)A點(diǎn)到原點(diǎn)的距離是 .
(3)將點(diǎn)C向x軸的負(fù)方向平移6個(gè)單位,它與點(diǎn) 重合.
(4)連接CE,則直線CE與y軸是什么位置關(guān)系?
(5)點(diǎn)D分別到x、y軸的距離是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】五張如圖1的長為,寬為(>)的小長方形紙片,按圖2的方式不重疊地放在長方形ABCD內(nèi),未被覆蓋的部分(兩個(gè)長方形)用陰影表示.設(shè)左上角與右下角的陰影部分的面積的差為S,當(dāng)BC的長度變化時(shí),按照同樣的放置方式,S始終保持不變,則,滿足( )
A.= B.=2 C.=3 D.=4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com