【題目】在大同市開張的美化城市活動中,某居民小區(qū)要在一塊一邊靠墻(墻長)的空地上修建一個矩形花園,花園的一邊靠前,另三邊用總長為的柵欄圍成(如圖所示),若設花園的長為,花園的面積為

之間的函數(shù)關系式,并寫出自變量的取值范圍;

滿足條件的花園面積能達到嗎?若能,求出此時的值;若不能,說明理由;

根據中求得的函數(shù)關系式,描述其圖象的變化趨勢;并結合題意判斷當取何值時,花園的面積最大?最大面積為多少?

【答案】 ;,理由見解析;米時,花園的面積最大,最大面積是

【解析】

(1)根據矩形的面積公式即可求得之間的函數(shù)關系式,結合墻的長度確定x的取值范圍;(2)把y=200代入(1)中的解析式,得到一個以x為未知數(shù)的一元二次方程,解一元二次方程即可解答;(3)先把二次函數(shù)的一般式化為頂點式,結合x的取值范圍及二次函數(shù)的性質解答即可.

由題意可得,

;

不能,

理由:將代入,

,

解得,,

花園面積不能達到;

函數(shù)圖象的頂點為,開口向下,當時,的增大而增大,當時,的增大而減小,

由題意可知,

時,最大,此時,

即當米時,花園的面積最大,最大面積是

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,ABC中,∠B=90°,AB=6cm,BC=8cm.

(1)點P從點A開始沿AB邊向B以1cm/s的速度移動,點Q從B點開始沿BC邊向點C以2cm/s的速度移動.如果P,Q分別從A,B同時出發(fā),經過幾秒,使PBQ的面積等于8cm2?

(2)點P從點A開始沿AB邊向B以1cm/s的速度移動,點Q從B點開始沿BC邊向點C以2cm/s的速度移動.如果P,Q分別從A,B同時出發(fā),線段PQ能否將ABC分成面積相等的兩部分?若能,求出運動時間;若不能說明理由.

(3)若P點沿射線AB方向從A點出發(fā)以1cm/s的速度移動,點Q沿射線CB方向從C點出發(fā)以2cm/s的速度移動,P,Q同時出發(fā),問幾秒后,PBQ的面積為1?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知的直徑,延長,使,過的切線為切點,連接、.求:

的長;

的值;

的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,過點C的直線MNAB,DAB邊上一點,過點DDEBC,交直線MNE,垂足為F,連接CD,BE.

(1)求證:CEAD;

(2)當DAB中點時,四邊形BECD是什么特殊四邊形?說明你的理由;

(3)若DAB中點,則當∠A的大小滿足什么條件時,四邊形BECD是正方形?請說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC三個頂點的坐標分別為A(4,5)、B(1,0)、C(4,0).

(1)畫出△ABC關于y軸的對稱圖形△A1B1C1,并寫出A1點的坐標;

(2)y軸上求作一點P,使△PAB的周長最小,并求出點P的坐標及△PAB的周長最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某一出租車一天下午以鼓樓為出發(fā)地在東西方向運營,向東走為正,向西走為負,行車里程(單位:㎞)依先后次序記錄如下:+9,-3,-5,+4,-8,+6,-3,-6,-4,+10.

⑴將最后一名乘客送到目的地,出租車離鼓樓出發(fā)點多遠?在鼓樓的什么方向?

⑵若每千米的價格為2.4元,司機一個下午的營業(yè)額是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,己知為等腰三角形且面積為,滿足條件的點有( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線ab,c表示三條公路,現(xiàn)要建一個貨物中轉站,要求它到三條公路的距離相等,則可供選擇的地址有_________處。(填數(shù)字)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為探測某座山的高度AB,某飛機在空中C處測得山頂A處的俯角為31°,此時飛機的飛行高度為CH=4千米;保持飛行高度與方向不變,繼續(xù)向前飛行2千米到達D處,測得山頂A處的俯角為50°.求此山的高度AB.(參考數(shù)據:tan31°≈0.6,tan50°≈1.2)

查看答案和解析>>

同步練習冊答案