【題目】如圖,在四邊形ABCD中,ABDCBCAD,∠D90°,ACBC,AB10cm,BC6cm,F點以2cm/秒的速度在線段AB上由AB勻速運動,E點同時以1cm/秒的速度在線段BC上由BC勻速運動,設(shè)運動時間為t秒(0t5).

1)求證:△ACD∽△BAC;

2)求DC的長;

3)試探究:△BEF可以為等腰三角形嗎?若能,求t的值;若不能,請說明理由.

【答案】1)見解析;(2DC6.4cm;(3)當EFB為等腰三角形時,t的值為秒或秒或秒.

【解析】

1)根據(jù)三角形相似的判定定理即可得到結(jié)論;

2)由ACD∽△BAC,得,結(jié)合8cm,即可求解;

3)若EFB為等腰三角形,可分如下三種情況:①當 BFBE時, ②當EFEB時,③當FBFE時,分別求出t的值,即可.

1)∵CDAB,

∴∠BAC=∠DCA,

ACBC,∠ACB90°,

∴∠D=∠ACB90°,

∴△ACD∽△BAC;

2)在RtABC中,8cm,

由(1)知,ACD∽△BAC

,

即: ,解得:DC6.4cm;

3)△BEF能為等腰三角形,理由如下:

由題意得:AF2t,BEt,

EFB為等腰三角形,可分如下三種情況:

①當 BFBE時,102tt,解得:t=

②當EFEB時,如圖1,過點EAB的垂線,垂足為G,

,此時BEG∽△BAC,

,即

解得:t=;

③當FBFE時,如圖2,過點FAB的垂線,垂足為H,

,此時BFH∽△BAC,

,即

解得:;

綜上所述:當EFB為等腰三角形時,t的值為秒或秒或秒.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,拋物線yax2+3ax+ca0)與y軸交于點C,與x軸交于A,B兩點,點A在點B左側(cè).點B的坐標為(1,0),OC3OB,

1)求拋物線的解析式;

2)若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國慶期間,某風(fēng)景區(qū)推出兩種旅游觀光活動付費方式:若人數(shù)不超過20人,人均繳費500元;若人數(shù)超過20人,則每增加一位旅客,人均收費降低10元,但是人均收費不低于350元.現(xiàn)在某單位在國慶期間組織一批貢獻突出的職工到該景區(qū)旅游觀光,支付了12000元觀光費,請問:該單位一共組織了多少位職工參加旅游觀光活動?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于點,對稱軸為,則下列結(jié)論中正確的是(

A.

B. 時,的增大而增大

C.

D. 是一元二次方程的一個根

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,邊長為1,∠A60,順次連接菱形ABCD各邊中點,可得四邊形A1B1C1D1;順次連結(jié)四邊形A1B1C1D1各邊中點,可得四邊形A2B2C2D2;順次連結(jié)四邊形A2B2C2D2各邊中點,可得四邊形A3B3C3D3;按此規(guī)律繼續(xù)下去,,則四邊形A2019B2019C2019D2019的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖中,P是斜邊AC上一個動點,以即為直徑作BC于點D,與AC的另一個交點E,連接DE

1)當時,

①若,求的度數(shù);

②求證

2)當,時,

①是含存在點P,使得是等腰三角形,若存在求出所有符合條件的CP的長;

②以D為端點過P作射線DH,作點O關(guān)于DE的對稱點Q恰好落在內(nèi),則CP的取值范圍為________.(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正比例函數(shù)的圖象與反比例函數(shù)的圖象交于、兩點.是第一象限內(nèi)反比例函數(shù)圖象上一點,過點軸的平行線,交直線于點,連接,若的面積為,則點的坐標為_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某小型水庫欄水壩的橫斷面是四邊形ABCDDCAB,測得迎水坡的坡角α=30°,已知背水坡的坡比為1.21,壩頂部DC寬為2m,壩高為6m,則壩底AB的長為_____m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為數(shù)學(xué)實驗“先行示范!保粩(shù)學(xué)活動小組帶上高度為1.5m的測角儀BC,對建筑物AO進行測量高度的綜合實踐活動,如圖,在BC處測得直立于地面的AO頂點A的仰角為30°,然后前進40mDE處,測得頂點A的仰角為75°.

1)求∠CAE的度數(shù);

2)求AE的長(結(jié)果保留根號);

3)求建筑物AO的高度(精確到個位,參考數(shù)據(jù):,.

查看答案和解析>>

同步練習(xí)冊答案