【題目】如圖中,,P是斜邊AC上一個(gè)動(dòng)點(diǎn),以即為直徑作交BC于點(diǎn)D,與AC的另一個(gè)交點(diǎn)E,連接DE.
(1)當(dāng)時(shí),
①若,求的度數(shù);
②求證;
(2)當(dāng),時(shí),
①是含存在點(diǎn)P,使得是等腰三角形,若存在求出所有符合條件的CP的長(zhǎng);
②以D為端點(diǎn)過P作射線DH,作點(diǎn)O關(guān)于DE的對(duì)稱點(diǎn)Q恰好落在內(nèi),則CP的取值范圍為________.(直接寫出結(jié)果)
【答案】(1)①40°;②詳見解析;(2)①7,10,12.5;②
【解析】
(1)①由BP是直徑可得,根據(jù)得 并可得, ,,根據(jù)三角形的內(nèi)角和定理得;②由,得到,根據(jù),,,得到,由等角對(duì)等邊得;
(2)①分三種情況:(一)當(dāng)時(shí),(二)當(dāng)時(shí),(三)當(dāng)時(shí),分別進(jìn)行討論求解即可;
②分三種情況討論:(一)當(dāng)Q點(diǎn)在P點(diǎn)上時(shí);(二)當(dāng)Q點(diǎn)在PC上時(shí)(三)當(dāng)Q點(diǎn)在PH上時(shí),分別討論,求出CP的值即可.
24.解(1)①連結(jié)BE,∵BP是直徑∴
∵,∴
∵,∴∴
∴
②∵,∴
,
又∵
∴
∴
(2)①由,,可以求得,,
∴,,
∵,
∴
當(dāng)是等腰三角形時(shí),有三種情況:(一),(二),(三)
(一)當(dāng)時(shí),
∴,
∴
∴
(二)當(dāng)時(shí),可知點(diǎn)D是斜邊的中線,
∴,
∴
∴
(三)當(dāng)時(shí),
作,則H是BD中點(diǎn),
可以求得,∴
∴,∴
②(一)當(dāng)O點(diǎn)的對(duì)稱點(diǎn)Q在P點(diǎn)上時(shí),B,O,Q三點(diǎn)共線,
如圖示
∴,且BP平分DE,由等腰三角形的性質(zhì)可知
∴
由(1)可知CP=7;
(二)當(dāng)O點(diǎn)的對(duì)稱點(diǎn)Q不在P點(diǎn)上,而在PC上時(shí),此情況Q點(diǎn)并不在上
(三)當(dāng)O點(diǎn)的對(duì)稱點(diǎn)Q不在P點(diǎn)上,而在PH上時(shí),B,O,Q三點(diǎn)不共線,
如圖示
∵,,且
∴四邊形DOEQ是菱形,
∴
∵
∴
又∵OE,OD,OB均為外接圓的半徑,
∴,
∴
∴
∴
∴由(1)可知,
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在水果銷售旺季,某水果店購(gòu)進(jìn)一優(yōu)質(zhì)水果,進(jìn)價(jià)為20元/千克,售價(jià)不低于20元/千克,且不超過32元/千克,根據(jù)銷售情況,發(fā)現(xiàn)該水果一天的銷售量y(千克)與該天的售價(jià)x(元/千克)滿足如下表所示的一次函數(shù)關(guān)系.
銷售量y(千克) | … | 34.8 | 32 | 29.6 | 28 | … |
售價(jià)x(元/千克) | … | 22.6 | 24 | 25.2 | 26 | … |
(1)某天這種水果的售價(jià)為23.5元/千克,求當(dāng)天該水果的銷售量.
(2)如果某天銷售這種水果獲利150元,那么該天水果的售價(jià)為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為弘揚(yáng)傳統(tǒng)文化,某校開展了“傳承經(jīng)典文化,閱讀經(jīng)典名著”活動(dòng).為了解七、八年級(jí)學(xué)生(七、八年級(jí)各有600名學(xué)生)的閱讀效果,該校舉行了經(jīng)典文化知識(shí)競(jìng)賽.現(xiàn)從兩個(gè)年級(jí)各隨機(jī)抽取20名學(xué)生的競(jìng)賽成績(jī)(百分制)進(jìn)行分析,過程如下:
收集數(shù)據(jù):
七年級(jí):79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,77.
八年級(jí):92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.
整理數(shù)據(jù):
七年級(jí) | 0 | 1 | 0 | a | 7 | 1 |
八年級(jí) | 1 | 0 | 0 | 7 | b | 2 |
分析數(shù)據(jù):
平均數(shù) | 眾數(shù) | 中位數(shù) | |
七年級(jí) | 78 | 75 | |
八年級(jí) | 78 | 80.5 |
應(yīng)用數(shù)據(jù):
(1)由上表填空:a= ,b= ,c= ,d= .
(2)估計(jì)該校七、八兩個(gè)年級(jí)學(xué)生在本次競(jìng)賽中成績(jī)?cè)?/span>90分以上的共有多少人?
(3)你認(rèn)為哪個(gè)年級(jí)的學(xué)生對(duì)經(jīng)典文化知識(shí)掌握的總體水平較好,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),經(jīng)過點(diǎn)C的切線交AB的延長(zhǎng)線于點(diǎn)E , 交EC的延長(zhǎng)線于點(diǎn)D,連接AC .
(1)求證: AC平分∠DAE ;
(2)若,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一只不透明的袋子中,裝有2個(gè)白球和1個(gè)紅球,這些球除顏色外都相同.
(1)小明認(rèn)為,攪勻后從中任意摸出一個(gè)球,不是白球就是紅球是等可能的,你同意他的說法嗎?為什么?
(2)攪勻后從中一把摸出兩個(gè)球,請(qǐng)通過列表和樹狀圖求出兩個(gè)球都是白球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用兩種方法證明“圓的內(nèi)接四邊形對(duì)角互補(bǔ)”.
已知:如圖①,四邊形ABCD內(nèi)接于⊙O.
求證:∠B+∠D=180°.
證法1:如圖②,作直徑DE交⊙O于點(diǎn)E,連接AE、CE.
∵DE是⊙O的直徑,
∴ .
∵∠DAE+∠AEC+∠DCE+∠ADC=360°,
∴∠AEC+∠ADC=360°-∠DAE-∠DCE=360°-90°-90°=180°.
∵∠B和∠AEC所對(duì)的弧是,
∴ .
∴∠B+∠ADC=180°.
請(qǐng)把證法1補(bǔ)充完整,并用不同的方法完成證法2.
證法2:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,CE平分∠ACB交⊙O于E,交AB于點(diǎn)D,連接AE,∠E=30°,AC=5.
(1)求CE的長(zhǎng);
(2)求S△ADC:S△ACE的比值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系xOy中,雙曲線與直線y=ax+b(a≠0)交于A、B兩點(diǎn),直線AB分別交x軸、y軸于C、D兩點(diǎn),E為x軸上一點(diǎn).已知OA=OC=OE,A點(diǎn)坐標(biāo)為(3,4).
(1)將線段OE沿x軸平移得線段O′E′(如圖1),在移動(dòng)過程中,是否存在某個(gè)位置使|BO′﹣AE′|的值最大?若存在,求出|BO′﹣AE′|的最大值及此時(shí)點(diǎn)O′的坐標(biāo);若不存在,請(qǐng)說明理由;
(2)將直線OA沿射線OE平移,平移過程中交的圖象于點(diǎn)M(M不與A重合),交x軸于點(diǎn)N(如圖3).在平移過程中,是否存在某個(gè)位置使△MNE為以MN為腰的等腰三角形?若存在,求出M的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+x+c交x軸于A,B兩點(diǎn),交y軸于點(diǎn)C.直線y=﹣+2經(jīng)過點(diǎn)A,C.
(1)求拋物線的解析式;
(2)點(diǎn)P在拋物線在第一象限內(nèi)的圖象上,過點(diǎn)P作x軸的垂線,垂足為D,交直線AC于點(diǎn)E,連接PC,設(shè)點(diǎn)P的橫坐標(biāo)為m.
①當(dāng)△PCE是等腰三角形時(shí),求m的值;
②過點(diǎn)C作直線PD的垂線,垂足為F.點(diǎn)F關(guān)于直線PC的對(duì)稱點(diǎn)為F′,當(dāng)點(diǎn)F′落在坐標(biāo)軸上時(shí),請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com