【題目】如圖,在菱形中,,點(diǎn)、分別是、上任意的點(diǎn)(不與端點(diǎn)重合),且,連接與相交于點(diǎn),連接與相交于點(diǎn).給出如下幾個(gè)結(jié)論:①;②;③與一定不垂直;④的大小為定值.其中正確的結(jié)論有________.
【答案】①④
【解析】
①先證明△ABD為等邊三角形,根據(jù)“SAS”證明△AED≌△DFB;
②證明∠BGE=60°=∠BCD,從而得點(diǎn)B、C、D、G四點(diǎn)共圓,因此∠BGC=∠DGC=60°,過(guò)點(diǎn)C作CM⊥GB于M,CN⊥GD于N.證明△CBM≌△CDN,所以S四邊形BCDG=S四邊形CMGN,易求后者的面積;
③過(guò)點(diǎn)F作FP∥AE于P點(diǎn),根據(jù)題意有FP:AE=DF:DA=1:3,則FP:BE=1:6=FG:BG,即BG=6GF;因?yàn)辄c(diǎn)E、F分別是AB、AD上任意的點(diǎn)(不與端點(diǎn)重合),且AE=DF,當(dāng)點(diǎn)E,F(xiàn)分別是AB,AD中點(diǎn)時(shí),CG⊥BD;
④∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°.
①∵ABCD為菱形,∴AB=AD,
∵AB=BD,∴△ABD為等邊三角形,
∴∠A=∠BDF=60°,
又∵AE=DF,AD=BD,
∴△AED≌△DFB,故本選項(xiàng)正確;
②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,
即∠BGD+∠BCD=180°,
∴點(diǎn)B、C、D、G四點(diǎn)共圓,
∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,
∴∠BGC=∠DGC=60°,
過(guò)點(diǎn)C作CM⊥GB于M,CN⊥GD于N(如圖1),
則△CBM≌△CDN(AAS),
∴S四邊形BCDG=S四邊形CMGN,
S四邊形CMGN=2S△CMG,
∵∠CGM=60°,
∴
∴S四邊形CMGN=2S△CMG
故本選項(xiàng)錯(cuò)誤;
③當(dāng)點(diǎn)E,F(xiàn)分別是AB,AD中點(diǎn)時(shí)(如圖3),
由(1)知,△ABD,△BDC為等邊三角形,
∵點(diǎn)E,F(xiàn)分別是AB,AD中點(diǎn),
∴∠BDE=∠DBG=30°,
∴DG=BG,
在△GDC與△BGC中,
,
∴△GDC≌△BGC,
∴∠DCG=∠BCG,
∴CH⊥BD,即CG⊥BD,故本選項(xiàng)錯(cuò)誤;
④∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,為定值,
故本選項(xiàng)正確;
綜上所述,正確的結(jié)論有①④,
故答案為:①④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,從外一點(diǎn)作的切線(xiàn),,切點(diǎn)分別為,,的直徑為,連結(jié),.
求證:;
求的值;
若,求劣弧的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)下列問(wèn)題,列出一元二次方程,并將其化成一般形式:
某班有名同學(xué),畢業(yè)時(shí)都將自己的照片向全班其他同學(xué)各送一張表示留念,全班共送張照片.
一矩形面積為,長(zhǎng)比寬多,求這個(gè)矩形的長(zhǎng)與寬.
把一塊面積為的長(zhǎng)方形紙片的一邊剪下,另一邊剪下,恰好變成一個(gè)正方形,求這個(gè)正方形的邊長(zhǎng).
一個(gè)直角三角形的斜邊長(zhǎng)是,兩直角邊之差為,求較短直角邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,都為,,,…中的數(shù),若方程至少有一根也是,,,…中的數(shù),就稱(chēng)該方程為“漂亮方程”,則“漂亮方程”的個(gè)數(shù)為( )
A. 8 B. 10 C. 12 D. 14
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中,,,將矩形沿折疊,使點(diǎn)與點(diǎn)重合,則折痕的長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一塊長(zhǎng)和寬分別為60厘米和40厘米的長(zhǎng)方形鐵皮,要在它的四角截去四個(gè)相等的小正方形,折成一個(gè)無(wú)蓋的長(zhǎng)方體水槽,使它的底面積為800平方厘米.求截去正方形的邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y=﹣x+5與雙曲線(xiàn)(x>0)相交于A,B兩點(diǎn),與x軸相交于C點(diǎn),△BOC的面積是.若將直線(xiàn)y=﹣x+5向下平移1個(gè)單位,則所得直線(xiàn)與雙曲線(xiàn)(x>0)的交點(diǎn)有( )
A. 0個(gè)B. 1個(gè)C. 2個(gè)D. 0個(gè),或1個(gè),或2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算
(1)x3x4x5
(2);
(3)(﹣2mn2)2﹣4mn3(mn+1);
(4)3a2(a3b2﹣2a)﹣4a(﹣a2b)2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com