【題目】如圖,AB是⊙O直徑,D為⊙O上一點(diǎn),AT平分∠BAD交⊙O于點(diǎn)T,過T作AD的垂線交AD的延長線于點(diǎn)C.

(1)求證:CT為⊙O的切線;
(2)若⊙O半徑為2, ,求AD的長.

【答案】
(1)證明:連接OT,

∵OA=OT,
∴∠OAT=∠OTA,
又∵AT平分∠BAD,
∴∠DAT=∠OAT,
∴∠DAT=∠OTA,
∴OT∥AC,
又∵CT⊥AC,
∴CT⊥OT,
∴CT為⊙O的切線
(2)解:過O作OE⊥AD于E,則E為AD中點(diǎn),
又∵CT⊥AC,
∴OE∥CT,
∴四邊形OTCE為矩形
∵CT= ,
∴OE=
又∵OA=2,
∴在Rt△OAE中, =1,
∴AD=2AE=2
【解析】(1)要證相切,可證CT⊥OT,由CT⊥AC,需證OT∥AC,即證出∠DAT=∠OTA,進(jìn)而得出CT為⊙O的切線;(2)求弦長需作垂線,構(gòu)造出弦心距,利用勾股定理求出弦的一半,進(jìn)而求出整個(gè)弦長.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

1)小亮遇到這樣問題:如圖1,已知ABCDEOF是直線AB、CD間的一條折線.判斷∠O、∠BEO、∠DFO三個(gè)角之間的數(shù)量關(guān)系.小亮通過思考發(fā)現(xiàn):過點(diǎn)OOPAB,通過構(gòu)造內(nèi)錯(cuò)角,可使問題得到解決.

請(qǐng)回答:∠O、∠BEO、∠DFO三個(gè)角之間的數(shù)量關(guān)系是 

參考小亮思考問題的方法,解決問題:

2)如圖2,將△ABC沿BA方向平移到△DEFB、DE共線),∠B50°,ACDF相交于點(diǎn)G,GP、EP分別平分∠CGF、∠DEF相交于點(diǎn)P,求∠P的度數(shù);

3)如圖3,直線mn,點(diǎn)BF在直線m上,點(diǎn)EC在直線n上,連接FE并延長至點(diǎn)A,連接BA、BCCA,做∠CBF和∠CEF的平分線交于點(diǎn)M,若∠ADCα,則∠M  (直接用含α的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線 軸、 軸分別相交于點(diǎn)A(-1,0)和B(0,3),其頂點(diǎn)為D.

(1)求這條拋物線的解析式;
(2)若拋物線與 軸的另一個(gè)交點(diǎn)為E,求△ODE的面積;拋物線的對(duì)稱軸上是否存在點(diǎn)P使得△PAB的周長最短.若存在請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,定點(diǎn)、的坐標(biāo)分別是(40)、(04)、(20),動(dòng)點(diǎn)在第一象限,且到原點(diǎn)的距離為4個(gè)單位長度.

1)當(dāng)點(diǎn)到兩坐標(biāo)軸的距離相等時(shí),求的面積;

2)若點(diǎn)是線段(不與點(diǎn)、重合)上的動(dòng)點(diǎn),當(dāng)是等腰直角三角形時(shí),求點(diǎn)軸的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個(gè)袋中均裝有三張除所標(biāo)數(shù)值外完全相同的卡片,甲袋中的三張卡片上所標(biāo)的數(shù)值分別為-7、-1、3,乙袋中的三張卡片上所標(biāo)的數(shù)值分別為-2、1、6.先從甲袋中隨機(jī)取出一張卡片,用 表示取出的卡片上標(biāo)的數(shù)值,再從乙袋中隨機(jī)取出一張卡片,用 表示取出的卡片上標(biāo)的數(shù)值,把 分別作為點(diǎn) 的橫坐標(biāo)、縱坐標(biāo).
(1)用適當(dāng)?shù)姆椒▽懗鳇c(diǎn) 的所有情況;
(2)求點(diǎn) 落在第三象限的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】青少年“心理健康”問題已經(jīng)引起了社會(huì)的關(guān)注,某中學(xué)對(duì)全校850名學(xué)生進(jìn)行了一次“心理健康”知識(shí)測(cè)試,并從中抽取了50名學(xué)生的成績(得分取正整數(shù),滿分為100分)作為樣本,列出下面的頻數(shù)分布表(單位:分)

成績

50.5x60.5

60.5x70.5

70.5x80.5

80.5x90.5

90.5x100.5

頻數(shù)

2

8

10

16

14

1)組距是   ,組數(shù)是   

2)成績?cè)?/span>60.5x80.5范圍的頻數(shù)是   

3)畫出頻數(shù)分布直方圖.

4)若成績?cè)?/span>80分以上(不含80分)為優(yōu)秀,試估計(jì)該校成績優(yōu)秀的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn) O 是等邊△ABC 內(nèi)一點(diǎn),∠AOB105°,∠BOC 等于α,將△BOC 繞點(diǎn) C 按 順時(shí)針方向旋轉(zhuǎn) 60°得△ADC,連接 OD.

1)求證:△COD 是等邊三角形.

2)求∠OAD 的度數(shù).

3)探究:當(dāng)α為多少度時(shí),△AOD 是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:平面內(nèi)的直線l1l2相交于點(diǎn)O,對(duì)于該平面內(nèi)任意一點(diǎn)M,點(diǎn)M到直線l1、l2的距離分別為a、b,則稱有序非負(fù)實(shí)數(shù)對(duì)(a,b)是點(diǎn)M的“距離坐標(biāo)”,根據(jù)上述定義,距離坐標(biāo)為(21)的點(diǎn)的個(gè)數(shù)有( 。

A. 2個(gè)B. 3個(gè)C. 4個(gè)D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形紙片中,,點(diǎn)是邊上一點(diǎn),將矩形紙片沿折疊,點(diǎn)落在點(diǎn)處,設(shè)相交于點(diǎn)

1)如圖1,若點(diǎn)與點(diǎn)重合,則的形狀是 ;

2)在(1)的條件下,求的長;

3)如圖2,設(shè)相交于點(diǎn),若,求的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案