【題目】拋物線:y=ax2+2ax+a2+2的一部分如圖所示,那么該拋物線在y軸右側(cè)與x軸交點(diǎn)的坐標(biāo)是 .
【答案】(1,0)
【解析】由圖可知點(diǎn)(-3,0)在拋物線上,把(-3,0)代入y=ax2+2ax+a2+2中,得9a-6a+a2+2=0 , 解得a=-1或a=-2;當(dāng)a=-1時(shí),y=-x2-2x+3=-(x+3)(x-1) , 設(shè)y=0 , 則x1=-3 , x2=1 ,
∴在y軸右側(cè)與x軸交點(diǎn)的坐標(biāo)是(1,0);
當(dāng)a=-2時(shí),y=-2x2-4x+6=-2(x+3)(x-1) , 設(shè)y=0 , 則x1=-3 , x2=1 ,
∴在y軸右側(cè)與x軸交點(diǎn)的坐標(biāo)是(1,0).∴拋物線在y軸右側(cè)與x軸交點(diǎn)的坐標(biāo)是(1,0).
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解二次函數(shù)的性質(zhì)的相關(guān)知識(shí),掌握增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減。粚(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小,以及對(duì)拋物線與坐標(biāo)軸的交點(diǎn)的理解,了解一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒有交點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,點(diǎn)E、P在邊AB上,且AE=BP,過點(diǎn)E、P作BC的平行線,分別交AC于點(diǎn)F、Q,記△AEF的面積為S1 , 四邊形EFQP的面積為S2 , 四邊形PQCB的面積為S3 .
(1)求證:EF+PQ=BC;
(2)若S1+S3=S2 , 求的值;
(3)若S3﹣S1=S2 , 直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)投入13 800元資金購(gòu)進(jìn)甲、乙兩種礦泉水共500箱,礦泉水的成本價(jià)和銷售價(jià)如表所示:
類別/單價(jià) | 成本價(jià) | 銷售價(jià)(元/箱) |
甲 | 24 | 36 |
乙 | 33 | 48 |
(1)該商場(chǎng)購(gòu)進(jìn)甲、乙兩種礦泉水各多少箱?
(2)全部售完500箱礦泉水,該商場(chǎng)共獲得利潤(rùn)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在菱形ABCD中,點(diǎn)E,O,F(xiàn)分別為AB,AC,AD的中點(diǎn),連接CE,CF,OE,OF.
(1)求證:△BCE≌△DCF;
(2)當(dāng)AB與BC滿足什么關(guān)系時(shí),四邊形AEOF是正方形?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解
∵<<,即2<<3.
∴的整數(shù)部分為2,小數(shù)部分為﹣2,
∴1<﹣1<2
∴﹣1的整數(shù)部分為1.
∴﹣1的小數(shù)部分為﹣2
解決問題:已知:a是﹣3的整數(shù)部分,b是﹣3的小數(shù)部分,
求:(1)a,b的值;
(2)(﹣a)3+(b+4)2的平方根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知線段AB和CD的公共部分BD=AB= CD,線段AB、CD的中點(diǎn)E,F之間距離是10cm,求AB,CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2016·天津)公司有330臺(tái)機(jī)器需要一次性運(yùn)送到某地,計(jì)劃租用甲、乙兩種貨車共8輛,已知每輛甲種貨車一次最多運(yùn)送機(jī)器45臺(tái),租車費(fèi)用為400元,每輛乙種貨車一次最多運(yùn)送機(jī)器30臺(tái),租車費(fèi)用為280元.
(1)設(shè)租用甲種貨車x輛(x為非負(fù)整數(shù)),試填寫表格:
表一:
租用甲種貨車的數(shù)量 / 輛 | 3 | 7 | x |
租用的甲種貨車最多運(yùn)送機(jī)器的數(shù)量 / 臺(tái) | 135 | ||
租用的乙種貨車最多運(yùn)送機(jī)器的數(shù)量 / 臺(tái) | 150 |
表二:
租用甲種貨車的數(shù)量 / 輛 | 3 | 7 | x |
租用甲種貨車的費(fèi)用/ 元 | 2800 | ||
租用乙種貨車的費(fèi)用 / 元 | 280 |
(2)若租用甲種貨車x輛時(shí),設(shè)兩種貨車的總費(fèi)用為y元,試確定能完成此項(xiàng)運(yùn)送任務(wù)的最節(jié)省費(fèi)用的租車方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料:
點(diǎn)A、B在數(shù)軸上分別表示兩個(gè)數(shù)a、b,A、B兩點(diǎn)間的距離記為|AB|,O表示原點(diǎn).當(dāng)A、B兩點(diǎn)中有一點(diǎn)在原點(diǎn)時(shí),不妨設(shè)點(diǎn)A為原點(diǎn),如圖1,則|AB|=|OB|=|b|=|a-b|;當(dāng)A、B兩點(diǎn)都不在原點(diǎn)時(shí),
①如圖2,若點(diǎn)A、B都在原點(diǎn)的右邊時(shí),|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;
②如圖3,若點(diǎn)A、B都在原點(diǎn)的左邊時(shí),|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;
③如圖4,若點(diǎn)A、B在原點(diǎn)的兩邊時(shí),|AB|=|OB|+|OA|=|b|+|a|=-b+a=|a-b|.
回答下列問題:
(1)綜上所述,數(shù)軸上A、B兩點(diǎn)間的距離為|AB|=______.
(2)若數(shù)軸上的點(diǎn)A表示的數(shù)為3,點(diǎn)B表示的數(shù)為-4,則A、B兩點(diǎn)間的距離為______;
(3)若數(shù)軸上的點(diǎn)A表示的數(shù)為x,點(diǎn)B表示的數(shù)為-2,則|AB|=______,若|AB|=3,則x的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,方格紙中每個(gè)小方格都是長(zhǎng)為1個(gè)單位的正方形,若學(xué)校位置坐標(biāo)為A(1,2),解答以下問題:
(1)請(qǐng)?jiān)趫D中建立適當(dāng)?shù)闹苯亲鴺?biāo)系,并寫出圖書館B位置的坐標(biāo);
(2)若體育館位置坐標(biāo)為C(-3,3),請(qǐng)?jiān)谧鴺?biāo)系中標(biāo)出體育館的位置,并順次連接學(xué)校、圖書館、體育館,得到△ABC,求△ABC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com