如圖1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB為邊,在△OAB外作等邊△OBCDOB的中點,連接AD并延長交OCE

(1)求證:四邊形ABCE是平行四邊形;

(2)如圖2,將圖1中的四邊形ABCO折疊,使點C與點A重合,折痕為FG,求OG的長.


(1)證明:在Rt△OAB中,

D為OB的中點

∴DO=DA 

∴∠DAO=∠DOA =30°, ∠EOA=90°

∴∠AEO =60° 

又∵△OBC為等邊三角形

∴∠BCO=∠AEO =60°

∴BC∥AE     

∵∠BAO=∠COA =90°

∴OC∥AB     

∴四邊形ABCE是平行四邊形.        …………………………………………………6分

(2)解:設OG=,由折疊可知:AG=GC=8-      …….…………………………7分

在Rt△ABO中

∵∠OAB =90°,∠AOB =30°,OB=8

∴OA=OB·cos30°=8×=   .……………………………………………………..8分

在Rt△OAG中,OG2+OA2=AG2

    ………………………,……………………………………….…..9分

解得,

∴OG=1  …………………,……………………………………………….………………..10分

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•蘭州)如圖1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB為邊,在△OAB外作等邊△OBC,D是OB的中點,連接AD并延長交OC于E.
(1)求證:四邊形ABCE是平行四邊形;
(2)如圖2,將圖1中的四邊形ABCO折疊,使點C與點A重合,折痕為FG,求OG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,在△OAB中,∠OAB=90º,∠AOB=30º,OB=8.以OB為一邊,在△OAB外作等邊三角形OBC,D是OB的中點,連接AD并延長交OC于E.

1.求點B的坐標

2.求證:四邊形ABCE是平行四邊形;

3.如圖2,將圖1中的四邊形ABCO折疊,使點C與點A重合,折痕為FG,求OG的長.

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,在△OAB中,∠OAB=90º,∠AOB=30º,OB=8.以OB為一邊,在△OAB外作等邊三角形OBC,D是OB的中點,連接AD并延長交OC于E.
【小題1】求點B的坐標
【小題2】求證:四邊形ABCE是平行四邊形;
【小題3】如圖2,將圖1中的四邊形ABCO折疊,使點C與點A重合,折痕為FG,求OG的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆山東省寧津縣實驗中學九年級中考模擬數(shù)學試卷(帶解析) 題型:解答題

如圖1,在△OAB中,∠OAB=90º,∠AOB=30º,OB=8.以OB為一邊,在△OAB外作等邊三角形OBC,D是OB的中點,連接AD并延長交OC于E.
【小題1】求點B的坐標
【小題2】求證:四邊形ABCE是平行四邊形;
【小題3】如圖2,將圖1中的四邊形ABCO折疊,使點C與點A重合,折痕為FG,求OG的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年山東省九年級中考模擬數(shù)學試卷(解析版) 題型:解答題

如圖1,在△OAB中,∠OAB=90º,∠AOB=30º,OB=8.以OB為一邊,在△OAB外作等邊三角形OBC,D是OB的中點,連接AD并延長交OC于E.

1.求點B的坐標

2.求證:四邊形ABCE是平行四邊形;

3.如圖2,將圖1中的四邊形ABCO折疊,使點C與點A重合,折痕為FG,求OG的長.

 

查看答案和解析>>

同步練習冊答案