如圖1,在△OAB中,∠OAB=90º,∠AOB=30º,OB=8.以O(shè)B為一邊,在△OAB外作等邊三角形OBC,D是OB的中點,連接AD并延長交OC于E.
【小題1】求點B的坐標
【小題2】求證:四邊形ABCE是平行四邊形;
【小題3】如圖2,將圖1中的四邊形ABCO折疊,使點C與點A重合,折痕為FG,求OG的長.

【小題1】∵在△OAB中,∠OAB=90º,∠AOB=30º,OB=8,
∴OA=4,AB=4!帱cB的坐標為(4,4)!2分
【小題2】∵∠OAB=90º,∴AB⊥軸,∴AB∥EC。 又∵△OBC是等邊三角形,∴OC=OB=8。
又∵D是OB的中點,即AD是Rt△OAB斜邊上的中線,
∴AD=OD,∴∠OAD=∠AOD=30º,∴OE=4!郋C=OC-OE=4。
∴AB=EC。∴四邊形ABCE是平行四邊形!6分
【小題3】設(shè)OG=,則由折疊對稱的性質(zhì),得GA=GC=8-
在Rt△OAG中,由勾股定理,得,即,
解得,!郞G的長為1!10分解析:
(1)由在△ABO中,∠OAB=90°,∠AOB=30°,OB=8,根據(jù)三角函數(shù)的知識,即可求得AB與OA的長,即可求得點B的坐標;
(2)首先可得CE∥AB,D是OB的中點,根據(jù)直角三角形斜邊的中線等于斜邊的一半,可證得BD=AD,∠ADB=60°,又由△OBC是等邊三角形,可得∠ADB=∠OBC,根據(jù)內(nèi)錯角相等,兩直線平行,可證得BC∥AE,繼而可得四邊形ABCD是平行四邊形;
(3)首先設(shè)OG的長為x,由折疊的性質(zhì)可得:AG=CG=8-x,然后根據(jù)勾股定理可得方程(8-x)2=x2+(42,解此方程即可求得OG的長.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•蘭州)如圖1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以O(shè)B為邊,在△OAB外作等邊△OBC,D是OB的中點,連接AD并延長交OC于E.
(1)求證:四邊形ABCE是平行四邊形;
(2)如圖2,將圖1中的四邊形ABCO折疊,使點C與點A重合,折痕為FG,求OG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,在△OAB中,∠OAB=90º,∠AOB=30º,OB=8.以O(shè)B為一邊,在△OAB外作等邊三角形OBC,D是OB的中點,連接AD并延長交OC于E.

1.求點B的坐標

2.求證:四邊形ABCE是平行四邊形;

3.如圖2,將圖1中的四邊形ABCO折疊,使點C與點A重合,折痕為FG,求OG的長.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆山東省寧津縣實驗中學九年級中考模擬數(shù)學試卷(帶解析) 題型:解答題

如圖1,在△OAB中,∠OAB=90º,∠AOB=30º,OB=8.以O(shè)B為一邊,在△OAB外作等邊三角形OBC,D是OB的中點,連接AD并延長交OC于E.
【小題1】求點B的坐標
【小題2】求證:四邊形ABCE是平行四邊形;
【小題3】如圖2,將圖1中的四邊形ABCO折疊,使點C與點A重合,折痕為FG,求OG的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年山東省九年級中考模擬數(shù)學試卷(解析版) 題型:解答題

如圖1,在△OAB中,∠OAB=90º,∠AOB=30º,OB=8.以O(shè)B為一邊,在△OAB外作等邊三角形OBC,D是OB的中點,連接AD并延長交OC于E.

1.求點B的坐標

2.求證:四邊形ABCE是平行四邊形;

3.如圖2,將圖1中的四邊形ABCO折疊,使點C與點A重合,折痕為FG,求OG的長.

 

查看答案和解析>>

同步練習冊答案