分析 (1)根據(jù)勾股定理求出即可;
(2)分為兩種情況,再根據(jù)勾股定理求出即可.
解答 解:(1)由勾股定理得:c=$\sqrt{{a}^{2}+^{2}}$=$\sqrt{{5}^{2}+1{2}^{2}}$=13;
(2)當(dāng)邊c為直角邊,邊b為斜邊時(shí),c=$\sqrt{^{2}-{a}^{2}}$=$\sqrt{{5}^{2}-{3}^{2}}$=4;
當(dāng)邊c為斜邊,c=$\sqrt{^{2}+{a}^{2}}$=$\sqrt{{5}^{2}+{3}^{2}}$=$\sqrt{34}$;
即c=4或$\sqrt{34}$.
點(diǎn)評(píng) 本題考查了勾股定理的應(yīng)用,能靈活運(yùn)用定理進(jìn)行計(jì)算是解此題的關(guān)鍵,用了分類討論思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ±6 | B. | -6 | C. | 3 | D. | ±3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com