【題目】如圖,將矩形ABCD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到矩形FGCE,點(diǎn)M、N分別是BD、GE的中點(diǎn),若BC=14,CE=2,則MN的長( )

A.7
B.8
C.9
D.10

【答案】D
【解析】解:連接AC、CF、AF,如圖所示:
∵矩形ABCD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到矩形FFCE,
∴∠ABC=90°,
∴AC= = =10 ,
AC=BD=GE=CF,AC與BD互相平分,GE與CF互相平分,
∵點(diǎn)M、N分別是BD、GE的中點(diǎn),
∴M是AC的中點(diǎn),N是CF的中點(diǎn),
∴MN是△ACF的中位線,
∴MN= AF,
∵∠ACF=90°,
∴△ACF是等腰直角三角形,
∴AF= AC=10 × =20,
∴MN=10.
故選:D.

【考點(diǎn)精析】本題主要考查了等腰直角三角形和矩形的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個(gè)底角相等且等于45°;矩形的四個(gè)角都是直角,矩形的對角線相等才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程3x-7x-1=-2x+3+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)y=﹣3x+1,下列結(jié)論正確的是( 。

A. 它的圖象必經(jīng)過點(diǎn)(﹣13

B. 它的圖象經(jīng)過第一、二、三象限

C. 當(dāng)x1時(shí),y0

D. y的值隨x值的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形、菱形、正方形都一定具有的性質(zhì)是(

A.對角線垂直B.對角線互相平分

C.四個(gè)角都是直角D.對角線相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于任意實(shí)數(shù)a,b,定義運(yùn)算aba2+ab+b2.若方程(x2)﹣50的兩根記為m、n,則m+n________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市2016年國慶節(jié)這天的最高氣溫是8℃,最低氣溫是﹣2℃,則該市這天的最高氣溫比最低氣溫高℃.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,斜坡米,坡度,現(xiàn)計(jì)劃在斜坡中點(diǎn)處挖去部分坡體修建一個(gè)平行于水平線的平臺(tái)和一條新的斜坡

(1)若修建的斜坡的坡角為,求平臺(tái)的長;(結(jié)果保留根號)

(2)斜坡正前方一座建筑物上懸掛了一幅巨型廣告,小明在點(diǎn)測得廣,告頂部的仰角為,他沿坡面走到坡腳處,然后向大樓方向繼行走米來到處,測得廣告底部的仰角為,此時(shí)小明距大樓底端米.已知、、在同一平面內(nèi),、、在同一條直線上,求廣告的長度.(參考數(shù)據(jù):,,,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知三角形的三邊長都是整數(shù),最長邊長為8,則滿足上述條件的互不全等的三角形的個(gè)數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,弧AB=60°,AB=6,

(1)求圓的半徑;(2)求弧AB的長;(3)求陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊答案