【題目】1)(探究發(fā)現(xiàn))

如圖1,的頂點(diǎn)在正方形兩條對(duì)角線的交點(diǎn)處,,將繞點(diǎn)旋轉(zhuǎn),旋轉(zhuǎn)過程中,的兩邊分別與正方形的邊交于點(diǎn)和點(diǎn)(點(diǎn)與點(diǎn)不重合).則之間滿足的數(shù)量關(guān)系是   

2)(類比應(yīng)用)

如圖2,若將(1)中的“正方形”改為“的菱形”,其他條件不變,當(dāng)時(shí),上述結(jié)論是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)猜想結(jié)論并說明理由.

3)(拓展延伸)

如圖3,,平分,,且,點(diǎn)上一點(diǎn),,求的長.

【答案】12)結(jié)論不成立.3

【解析】

1)結(jié)論:.根據(jù)正方形性質(zhì),證,根據(jù)全等三角形性質(zhì)可得結(jié)論;(2)結(jié)論不成立..連接,在上截取,連接.根據(jù)菱形性質(zhì),證,四點(diǎn)共圓,分別證是等邊三角形,是等邊三角形,根據(jù)等邊三角形性質(zhì)證,根據(jù)全等三角形性質(zhì)可得結(jié)論;(3)由可知是鈍角三角形,,作,設(shè).根據(jù)勾股定理,可得到,由,得四點(diǎn)共圓,再證是等邊三角形,由(2)可知:,故可得

1)如圖1中,結(jié)論:.理由如下:

∵四邊形是正方形,

,,,

,

,

故答案為

2)如圖2中,結(jié)論不成立.

理由:連接,在上截取,連接

∵四邊形是菱形,,

,

四點(diǎn)共圓,

,

是等邊三角形,

,,

,,

是等邊三角形,

,

,

,

3)如圖3中,由可知是鈍角三角形,,作,設(shè)

中,

,

解得(舍棄)或,

,

四點(diǎn)共圓,

平分

,

,

,

是等邊三角形,

由(2)可知:,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】龍蝦狂歡季再度開啟,第屆中國合肥龍蝦節(jié)的主題是“讓你知蝦,也知稻”,稻田小龍蝦養(yǎng)殖技術(shù)在合肥周邊的鄉(xiāng)鎮(zhèn)大力推廣,已知每千克小龍蝦養(yǎng)殖成本為元,在整個(gè)銷售旺季的天里,銷售單價(jià)/千克,與時(shí)間(天)之間的函數(shù)關(guān)系式為:,日銷售量(千克)與時(shí)間第(天)之間的函數(shù)關(guān)系如圖所示:

1)求日銷售量與時(shí)間的函數(shù)關(guān)系式?

2)哪一天的日銷售利潤最大?最大利潤是多少?

3)在實(shí)際銷售的前天中,該養(yǎng)殖戶決定銷售千克小龍蝦,就捐贈(zèng)元給村里的特困戶,在這前天中,每天扣除捐贈(zèng)后的日銷售利潤隨時(shí)間的增大而增大,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,,,點(diǎn)的中點(diǎn),將 沿翻折得到,連,則線段的長等于(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校八年級(jí)共400名學(xué)生,為了解該年級(jí)學(xué)生的視力情況,從中隨機(jī)抽取40名學(xué)生的視力數(shù)據(jù)作為樣本,數(shù)據(jù)統(tǒng)計(jì)如下:

4.2 4.1 4.7 4.1 4.3 4.3 4.4 4.6 4.1 5.2

5.2 4.5 5.0 4.5 4.3 4.4 4.8 5.3 4.5 5.2

4.4 4.2 4.3 5.3 4.9 5.2 4.9 4.8 4.6 5.1

4.2 4.4 4.5 4.1 4.5 5.1 4.4 5.0 5.2 5.3

根據(jù)數(shù)據(jù)繪制了如下的表格和統(tǒng)計(jì)圖:

等級(jí)

視力(x

頻數(shù)

頻率

4

0.1

12

0.3

10

0.25

合計(jì)

40

1

根據(jù)上面提供的信息,回答下列問題:

1)統(tǒng)計(jì)表中的   ,   

2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

3)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)估計(jì)該校八年級(jí)學(xué)生視力為級(jí)的有多少人?

4)該年級(jí)學(xué)生會(huì)宣傳部有2名男生和2名女生,現(xiàn)從中隨機(jī)挑選2名同學(xué)參加防控近視,愛眼護(hù)眼宣傳活動(dòng),請(qǐng)用樹狀圖法或列表法求出恰好選中“11的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知銳角∠AOB如圖,(1)在射線OA上取一點(diǎn)C,以點(diǎn)O為圓心,OC長為半徑作,交射線OB于點(diǎn)D,連接CD

2)分別以點(diǎn)C,D為圓心,CD長為半徑作弧,交于點(diǎn)M,N

3)連接OM,MN

根據(jù)以上作圖過程及所作圖形,下列結(jié)論中錯(cuò)誤的是(

A. ∠COM=∠CODB. OM=MN,則∠AOB=20°

C. MN∥CDD. MN=3CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC和△DEF均為等腰直角三角形,AB2,DE1E、B、F、C在同一條直線上,開始時(shí)點(diǎn)B與點(diǎn)F重合,讓△DEF沿直線BC向右移動(dòng),最后點(diǎn)C與點(diǎn)E重合,設(shè)兩三角形重合面積為y,點(diǎn)F移動(dòng)的距離為x,則y關(guān)于x的大致圖象是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB為⊙O的直徑,AC為⊙O的切線,連結(jié)CO,過BBDOC交⊙OD,連結(jié)ADOCG.延長ABCD交于點(diǎn)E

1)求證:CD是⊙O的切線;

2)若BE2,DE4,求CD的長;

3)在(2)的條件下,連結(jié)BCADF,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將RtABC繞直角頂點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到A′B′C,連接BB',若∠A′B′B=20°,則∠A的度數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文具零售店準(zhǔn)備從批發(fā)市場選購A、B兩種文具,批發(fā)價(jià)A種為12/件,B種為8/件.若該店零售A、B兩種文具的日銷售量y(件)與零售價(jià)x(元/件)均成一次函數(shù)關(guān)系.(如圖)

1)求yx的函數(shù)關(guān)系式;

2)該店計(jì)劃這次選購A、B兩種文具的數(shù)量共120件,所花資金不超過1200元,并希望全部售完獲利不低于178元,若按A種文具日銷售量6件和B種文具每件可獲利1元計(jì)算,則該店這次有哪幾種進(jìn)貨方案?

3)若A種文具的零售價(jià)比B種文具的零售價(jià)高4/件,求兩種文具每天的銷售利潤(元)與A種文具零售價(jià)x(元/件)之間的函數(shù)關(guān)系式,并說明A、B兩種文具零售價(jià)分別為多少時(shí),每天銷售的利潤最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案