【題目】如圖,將Rt△ABC繞直角頂點(diǎn)C順時針旋轉(zhuǎn)90°,得到△A′B′C,連接BB',若∠A′B′B=20°,則∠A的度數(shù)是_____.
【答案】65°
【解析】根據(jù)旋轉(zhuǎn)的性質(zhì)可得BC=B′C,然后判斷出△BCB′是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得∠CBB′=45°,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和求出∠B′A′C,然后根據(jù)旋轉(zhuǎn)的性質(zhì)可得∠A=∠B′A′C.
∵Rt△ABC繞直角頂點(diǎn)C順時針旋轉(zhuǎn)90°得到△A′B′C,
∴BC=B′C,
∴△BCB′是等腰直角三角形,
∴∠CBB′=45°,
∴∠B′A′C=∠A′B′B+∠CBB′=20°+45°=65°,
由旋轉(zhuǎn)的性質(zhì)得∠A=∠B′A′C=65°,
故答案為:65°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為學(xué)生開展拓展性課程,擬在一塊長比寬多6米的長方形場地內(nèi)建造由兩個大棚組成的植物養(yǎng)殖區(qū)(如圖1),要求兩個大棚之間有間隔4米的路,設(shè)計(jì)方案如圖2,已知每個大棚的周長為44米.
(1)求每個大棚的長和寬各是多少?
(2)現(xiàn)有兩種大棚造價的方案,方案一是每平方米60元,超過100平方米優(yōu)惠500元,方案二是每平方米70元,超過100平方米優(yōu)惠總價的20%,試問選擇哪種方案更優(yōu)惠?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每年11月的最后一個星期四是感恩節(jié),小龍調(diào)查了初三年級部分同學(xué)在感恩節(jié)當(dāng)天將以何種方式表達(dá)感謝幫助過自己的人.他將調(diào)查結(jié)果分為如下四類:A類﹣﹣當(dāng)面致謝;B類﹣﹣打電話;C類﹣﹣發(fā)短信息或微信;D類﹣﹣寫書信.他將調(diào)查結(jié)果繪制成如圖不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖:
請你根據(jù)圖中提供的信息完成下列各題:
(1)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)在A類的同學(xué)中,有3人來自同一班級,其中有1人學(xué)過主持.現(xiàn)準(zhǔn)備從他們3人中隨機(jī)抽出兩位同學(xué)主持感恩節(jié)主題班會課,請你用樹狀圖或表格求出抽出的兩人都沒有學(xué)過主持的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某單位欲從內(nèi)部招聘管理人員一名,對甲、乙、丙三名候選人進(jìn)行了筆試和面試兩項(xiàng)測試,三人的測試成績?nèi)缦卤硭荆?/span>
根據(jù)錄用程序,組織200名職工對三人利用投票推薦的方式進(jìn)行民主評議,三人得票率(沒有棄權(quán)票,每位職工只能推薦1人)如上圖所示,每得一票記作1分.
(l)請算出三人的民主評議得分;
(2)如果根據(jù)三項(xiàng)測試的平均成績確定錄用人選,那么誰將被錄用(精確到 0.01 )?
(3)根據(jù)實(shí)際需要,單位將筆試、面試、民主評議三項(xiàng)測試得分按 4 : 3 : 3 的比例確定個人成績,那么誰將被錄用?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=10,AC=8,BC=6,經(jīng)過點(diǎn)C且與邊AB相切的動圓與CA,CB分別相交于點(diǎn)P,Q,則線段PQ的最小值( )
A.5
B.4
C.4.75
D.4.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點(diǎn)D,過點(diǎn)D作DE⊥AB于點(diǎn)E.
(1)求證:△ACD≌△AED;
(2)若∠B=30°,CD=1,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中每個小方格都是邊長為1個單位長度的正方形,在建立平面直角坐標(biāo)系后,⊿ABC的頂點(diǎn)在格點(diǎn)上。 且A(1,-4),B(5,-4),C(4,-1)
【1】畫出⊿ABC;
【1】求出⊿ABC 的面積;
【1】若把⊿ABC向上平移2個單位長度,再向左平移4個單位長度得到⊿BC,在圖中畫出⊿BC,并寫出B的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)為了綠化環(huán)境,計(jì)劃分兩次購進(jìn)A,B兩種花草,第一次分別購進(jìn)A,B兩種花草30棵和15棵,共花費(fèi)675元;第二次分別購進(jìn)A,B兩種花草12棵和5棵,共花費(fèi)265元(兩次購進(jìn)的A、B兩種花草價格均分別相同).
(1)A,B兩種花草每棵的價格分別是多少元?
(2)若購買A,B兩種花草共31棵,且B種花草的數(shù)量少于A種花草的數(shù)量的2倍,請你設(shè)計(jì)一種費(fèi)用最省的方案,并求出該方案所需費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+3(a≠0)經(jīng)過A(3,0)、B(4,1)兩點(diǎn),且與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)如圖(1),設(shè)拋物線與x軸的另一個交點(diǎn)為D,在拋物線的對稱軸上找一點(diǎn)H,使△CDH的周長最小,求出H點(diǎn)的坐標(biāo)并求出最小周長值.
(3)如圖(2),連接AC,E為線段AC上任意一點(diǎn)(不與A、C重合),經(jīng)過A、E、O三點(diǎn)的圓交直線AB于點(diǎn)F,當(dāng)△OEF的面積取得最小值時,求面積的最小值及E點(diǎn)坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com