如圖PA切⊙O于點A,PAB=,AOB=       ,ACB=       。
60º,30º;

∵PA切⊙O于點A
∴∠OAP=90°
PAB=
OAB=90°-30°=60°
∵OA=OB
∴∠OAB=∠OBA
∵∠OAB=60°
∴∠OAB=∠OBA=∠AOB=60°
∴∠ACB=30°
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

(本題10分)如圖,P是雙曲線的一個分支上的一點,以點P為圓心,1個單位長度為半徑作⊙P,設(shè)點P的坐標為(,).
(1)求當為何值時,⊙P與直線相切,并求點P的坐標.
(2)直接寫出當為何值時,⊙P與直線相交、相離.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

圓錐的底面半徑為8,母線長為9,則該圓錐的側(cè)面積為(   ).
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在矩形中,,點開始沿折線A-B-C-D以4cm/s的速度移動,點開始沿邊以1cm/s的速度移動,如果點、分別從、同時出發(fā),當其中一點到達時,另一點也隨之停止運動。設(shè)運動時間為t(s)。
⑴t為何值時,四邊形為矩形?
⑵如圖10-20,如果的半徑都是2cm,那么t為何值時,外切。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:計算題

已知:如圖,AB是⊙O的一條弦,點C為的中點,CD是⊙O的直徑,過C點的直線交AB所在直線于點E,交⊙O于點F。
(1)判定圖中的數(shù)量關(guān)系,并寫出結(jié)論;
(2)將直線繞C點旋轉(zhuǎn)(與CD不重合),在旋轉(zhuǎn)過程中,E點、F點的位置也隨之變化,請你在下面兩個備用圖中分別畫出在不同位置時,使(1)的結(jié)論仍然成立的圖形,標上相應(yīng)字母,選其中一個圖形給予證明。
         

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(本題滿分9分)如圖所示,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,點D在⊙O
上,過點C的切線交AD的延長線于點E,且AE⊥CE,連接CD.
(1)求證:DC=BC;  
(2)若AB=5,AC=4,求tan∠DCE的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(8分)如圖,在△ABC中,AB=AC,∠B=30°,O是BC上一點,以點O為
圓心,OB長為半徑作圓,恰好經(jīng)過點A,并與BC交于點D.
(1)判斷直線CA與⊙O的位置關(guān)系,并說明理由;
(2)若AB=2,求圖中陰影部分的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,AB為⊙O的弦,⊙O的半徑為5,OC⊥AB于點D,交⊙O于點C,且CD=l,則弦AB的長是            

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(8分)如圖,△ABC中,AB=4,AC=2,BC=2,以BC為直徑的半圓交AB于點D,以A為圓心,AC為半徑的扇形交AB于點E.

(1)以BC為直徑的圓與AC所在的直線有何位置關(guān)系?請說明理由;
(2)求圖中陰影部分的面積(結(jié)果可保留根號和).

查看答案和解析>>

同步練習冊答案