【題目】為了“創(chuàng)建文明城市,建設美麗家園”,我市某社區(qū)將轄區(qū)內(nèi)的一塊面積為1000m2的空地進行綠化,一部分種草,剩余部分栽花,設種草部分的面積為m2),種草所需費用1(元)與m2)的函數(shù)關系式為,其圖象如圖所示:栽花所需費用2(元)與x(m2)的函數(shù)關系式為2=﹣0.012﹣20+300000≤≤1000).

(1)請直接寫出k1k2和b的值;

(2)設這塊1000m2空地的綠化總費用為W(元),請利用W與的函數(shù)關系式,求出綠化總費用W的最大值;

(3)若種草部分的面積不少于700m2,栽花部分的面積不少于100m2,請求出綠化總費用W的最小值.

【答案】1k2=20,b=6000(2)W取最大值為32500元;(3)當x=900時,W取得最小值27900元.

【解析】試題分析:1)將x=600、y=18000代入y1=k1x可得k1;將x=600、y=18000x=1000、y=26000代入y1=k2x+b可得k2、b

2)分0≤x<600600≤x≤1000兩種情況,根據(jù)綠化總費用=種草所需總費用+種花所需總費用結合二次函數(shù)的性質(zhì)可得答案;

3)根據(jù)種草部分的面積不少于700m2,栽花部分的面積不少于100m2求得x的范圍,依據(jù)二次函數(shù)的性質(zhì)可得.

解:(1)將x=600、y=18000代入y1=k1x,得:18000=600k1,解得:k1=30;

將x=600、y=18000和x=1000、y=26000代入,得:

解得:;

(2)當0≤x600時,

W=30x+﹣0.01x2﹣20x+30000=﹣0.01x2+10x+30000,

∵﹣0.010W=﹣0.01x﹣5002+32500,

當x=500時,W取得最大值為32500元;

當600≤x≤1000時,

W=20x+6000+﹣0.01x2﹣20x+30000=﹣0.01x2+36000,

∵﹣0.010

當600≤x≤1000時,W隨x的增大而減小,

當x=600時,W取最大值為32400,

∵3240032500

W取最大值為32500元;

(3)由題意得:1000﹣x100,解得:x≤900,

由x≥700

則700≤x≤900,

當700≤x≤900時,W隨x的增大而減小,

當x=900時,W取得最小值27900元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠BAC=90°,以AB為直徑作⊙OBC于點D,EAC的中點,連接DE并延長交BA的延長線于點F

1)求證:DE是⊙O的切線;

2)若∠F=30°O的半徑為2,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C是弧的中點,⊙O的切線BD交AC的延長線于點D,E是OB的中點,CE的延長線交切線BD于點F,AF交⊙O于點H,連接BH.

⑴求證:AC=CD.

⑵若OB=2,求BH的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】明明利用自制“四旋翼”無人機進行數(shù)學研究活動,無人機傳遞數(shù)據(jù)顯示,無人機A與地面CD的距離為420米,從無人機底部A處看“河南大玉米”(鄭州會展中心千禧大夏)頂部B的俯角為30°,看這棟大樓底部C的俯角為60°,求“河南大玉米”的高度.(,≈2.236,結果精確到1m.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】11·湖州)如圖,已知拋物線經(jīng)過點(0,-3),請你確定一個

b的值,使該拋物線與x軸的一個交點在(1,0)和(3,0)之間。你確定的b的值是 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】從化市某中學初三(1)班數(shù)學興趣小組為了解全校800名初三學生的“初中畢業(yè)選擇升學和就業(yè)”情況,特對本班50名同學們進行調(diào)查,根據(jù)全班同學提出的3個主要觀點:A高中,B中技,C就業(yè),進行了調(diào)查(要求每位同學只選自己最認可的一項觀點);并制成了扇形統(tǒng)計圖(如圖).請回答以下問題:

(1)該班學生選擇   觀點的人數(shù)最多,共有   人,在扇形統(tǒng)計圖中,該觀點所在扇形區(qū)域的圓心角是   度.

(2)利用樣本估計該校初三學生選擇“中技”觀點的人數(shù).

(3)已知該班只有2位女同學選擇“就業(yè)”觀點,如果班主任從該觀點中,隨機選取2位同學進行調(diào)查,那么恰好選到這2位女同學的概率是多少?(用樹形圖或列表法分析解答).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx軸,∠ABC=135°,且AB=4.

(1)填空:拋物線的頂點坐標為 (用含m的代數(shù)式表示);

(2)求ABC的面積(用含a的代數(shù)式表示);

(3)若ABC的面積為2,當2m﹣5≤x≤2m﹣2時,y的最大值為2,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,有下列結論:abc0;a+cb3a+c0;a+bmam+b)(其中m≠1),其中正確的結論有______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+2x+m+1x軸于點A(a,0)和B(b,0),交y軸于點C,拋物線的頂點為D,下列三個判斷中:①x>0時,y>0;②a=﹣1,則b=4;③拋物線上有兩點P(x1,y1)和Q(x2,y2),若x1<1<x2,x1+x2>2,則y1>y2;正確的是( 。

A. B. C. D. ①②③都不對

查看答案和解析>>

同步練習冊答案