【題目】如圖,OP為∠AOB的角平分線,PC⊥OA,PD⊥OB,垂足分別是C、D,則下列結論錯誤的是(
A.PC=PD
B.∠CPD=∠DOP
C.∠CPO=∠DPO
D.OC=OD

【答案】B
【解析】解:∵OP為∠AOB的角平分線,PC⊥OA,PD⊥OB,垂足分別是C、D, ∴PC=PD,故A正確;
在Rt△OCP與Rt△ODP中,
,
∴△OCP≌△ODP,
∴∠CPO=∠DPO,OC=OD,故C、D正確.
不能得出∠CPD=∠DOP,故B錯誤.
故選B.
【考點精析】通過靈活運用角平分線的性質(zhì)定理,掌握定理1:在角的平分線上的點到這個角的兩邊的距離相等; 定理2:一個角的兩邊的距離相等的點,在這個角的平分線上即可以解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC=15,點D是BC邊上的一動點(不與B、C重合),ADE=B=αDEAB于點E,且tan∠α=.有以下的結論:①△ADE∽△ACDCD=9時,ACDDBE全等;③△BDE為直角三角形時,BD12;0BE,其中正確的結論是 (填入正確結論的序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是根據(jù)某公園的平面示意圖建立的平面直角坐標系,公園的入口位于坐標原點O,古塔位于點A(400,300),從古塔出發(fā)沿射線OA方向前行300m是盆景園B,從盆景園B向左轉(zhuǎn)90°后直行400m到達梅花閣C,則點C的坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD的四邊相等,且面積為120cm2 , 對角線AC=24cm,則四邊形ABCD的周長為(
A.52cm
B.40cm
C.39cm
D.26cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算
(1)10﹣(﹣5)+(﹣9)
(2)(﹣3)×(﹣9)+(﹣5)
(3)
(4)﹣12014÷(﹣5)2×(﹣ )﹣|0.8﹣1|.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若等腰三角形的兩邊長為3和7,則該等腰三角形的周長為(
A.10
B.13
C.17
D.13或17

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果將四根木條首尾相連,在相連處用螺釘連接,就能構成一個平面圖形.

(1)若固定三根木條AB,BC,AD不動,AB=AD=2cm,BC=5cm,如圖,量得第四根木條CD=5cm,判斷此時∠B與∠D是否相等,并說明理由.

(2)若固定一根木條AB不動,AB=2cm,量得木條CD=5cm,如果木條AD,BC的長度不變,當點D移到BA的延長線上時,點C也在BA的延長線上;當點C移到AB的延長線上時,點A、C、D能構成周長為30cm的三角形,求出木條AD,BC的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB、CD相交于點O,OM⊥AB,NO⊥CD,∠1= ∠BOC.

(1)求∠1的大;
(2)求∠BON的大小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知實數(shù)x、y、z滿足x2+y2+z2=4,則(2x﹣y)2+(2y﹣z)2+(2z﹣x)2的最大值是( 。
A.12
B.20
C.28
D.36

查看答案和解析>>

同步練習冊答案