【題目】已知點O(0,0),B(1,2).
(1)若點A在y軸上,且三角形AOB的面積為2,求點A的坐標(biāo);
(2)若點C的坐標(biāo)為(3,0),BD∥OC,且BD=OC,求點D的坐標(biāo).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:∠MON=30°,點A1、A2、A3…在射線ON上,點B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若OA1=1,則△A6B6A7的邊長為( )
A. 16B. 32C. 64D. 128
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某自行車廠計劃一周生產(chǎn)自行車1400輛,平均每天生產(chǎn)200輛,但由于種種原因,實際每天生產(chǎn)量與計劃量相比有出入,下表是某周的生產(chǎn)情況(超產(chǎn)記為正、減產(chǎn)記為負(fù)):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 七 |
增減產(chǎn)值 |
(1)根據(jù)記錄的數(shù)據(jù)可知該廠星期五生產(chǎn)自行車__________輛.
(2)根據(jù)記錄的數(shù)據(jù)可知該廠本周實際生產(chǎn)自行車_________輛.
(3)該廠實行每日計件工資制,每生產(chǎn)一輛車可得60元,若超額完成任務(wù),則超過部分每輛另獎15元,若沒有完成任務(wù),少生產(chǎn)一輛扣20元,那么該廠工人這一周的工作總額是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,點D、E分別在BC、AC上,且BD=CE,連接AD,BE交于點F;
(1)求∠AFE的度數(shù);
(2)連接FC,若∠AFC=90°,BF=1,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是我縣新區(qū)部分小區(qū)位置簡圖.設(shè)港澳城為點A,水榭花都為點B,朝陽家園為點C,濱海華庭為點D,陽光家園為點E,盛世嘉苑為點F,設(shè)每個小格的單位為1.
(1)請建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,并寫出六個小區(qū)的坐標(biāo);
(2)依次連接點A、C、E、B,請求出四邊形ACEB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】家家樂超市購進(jìn)一批面粉,標(biāo)準(zhǔn)質(zhì)量為50千克,現(xiàn)抽取20袋面粉進(jìn)行稱重檢測,為記錄的方便用,表示超過標(biāo)準(zhǔn)的重量,用表示不足標(biāo)準(zhǔn)的重量,結(jié)果如下表(單位:千克)
與標(biāo)準(zhǔn)差(千克) | -2 | -1.5 | -1 | -0.5 | 0 | 0.5 | 1 | 1.5 |
袋數(shù) | 3 | 2 | 3 | 4 | 1 | 2 | 1 | 4 |
(1)求這20袋面粉超出或不足的質(zhì)量為多少?
(2)這20袋面粉平均每袋多少千克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】時代中學(xué)從學(xué)生興趣出發(fā),實施體育活動課走班制.為了了解學(xué)生最喜歡的一種球類運動,以便合理安排活動場地,在全校至少喜歡一種球類(乒乓球、羽毛球、排球、籃球、足球)運動的1200名學(xué)生中,隨機抽取了若干名學(xué)生進(jìn)行調(diào)查(每人只能在這五種球類運動中選擇一種).調(diào)查結(jié)果統(tǒng)計如下:
球類名稱 | 乒乓球 | 羽毛球 | 排球 | 籃球 | 足球 |
人數(shù) | 42 | 15 | 33 |
解答下列問題:
(1)這次抽樣調(diào)查中的樣本是________;
(2)統(tǒng)計表中,________,________;
(3)試估計上述1200名學(xué)生中最喜歡乒乓球運動的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在正方形ABCD外取一點E,連接AE、BE、DE.過點A作AE的垂線交DE于點P.若AE=AP=1,PB=.下列結(jié)論:①△APD≌△AEB;②點B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結(jié)論的序號是( )
A.①③④ B.①②⑤ C.③④⑤ D.①③⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形,D為邊AC的中點,AE⊥EC,BD=EC.
(1)求證:△BDA≌△CEA;
(2)請判斷△ADE是什么三角形,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com