【題目】某自行車廠計劃一周生產(chǎn)自行車1400輛,平均每天生產(chǎn)200輛,但由于種種原因,實際每天生產(chǎn)量與計劃量相比有出入,下表是某周的生產(chǎn)情況(超產(chǎn)記為正、減產(chǎn)記為負(fù)):

星期

增減產(chǎn)值

1)根據(jù)記錄的數(shù)據(jù)可知該廠星期五生產(chǎn)自行車__________輛.

2)根據(jù)記錄的數(shù)據(jù)可知該廠本周實際生產(chǎn)自行車_________輛.

3)該廠實行每日計件工資制,每生產(chǎn)一輛車可得60元,若超額完成任務(wù),則超過部分每輛另獎15元,若沒有完成任務(wù),少生產(chǎn)一輛扣20元,那么該廠工人這一周的工作總額是多少元?

【答案】1190;(21409;(384550元.

【解析】

1)根據(jù)題意,把200減去10,即可求解;

2)先把表格數(shù)據(jù)求和,然后加上1400,即可求解;

3)利用(2)的結(jié)果,結(jié)合已知條件,即可求出該廠工人這一周的工作總額.

1(輛).

故答案是:190;

2,(輛).

故答案是:1409

3(元),

答:該廠工人這一周的工作總額是84550元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】201853日,中國科學(xué)院在上海發(fā)布了中國首款人工智能芯片:寒武紀(jì)(MLU100),該芯片在平衡模式下的等效理論峰值速度達(dá)每秒128 000 000 000 000次定點運(yùn)算,將數(shù)

128 000 000 000 000用科學(xué)計數(shù)法表示為(

A. 1.281014 B. 1.2810-14 C. 1281012 D. 0.1281011

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鈍角三角形ABC中,∠BAC>90°,AB=AC,ACB=α,過點A的直線lBC邊于點D.點E在直線l上,且BC=BE.,點EAD延長線上.

①當(dāng)α=30°,點D恰好為BC中點時,補(bǔ)全圖1直接寫出∠BAE= °,

BEA= °;

②如圖2,若∠BAE=2α,求∠BEA的度數(shù)(用含α的代數(shù)式表示);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某開發(fā)區(qū)有一塊四邊形的空地ABCD,現(xiàn)計劃在空地上種植草皮,經(jīng)測量∠A90°,AB3mBC12mCD13m,DA4m,若每平方米草皮需要200元,則要投入_____元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖像過點,,與軸交于另一點,且對稱軸是直線.

(1)求該二次函數(shù)的解析式;

(2)若上的一點,作,當(dāng)面積最大時,求的坐標(biāo);

(3)軸上的點,過軸,與拋物線交于,過軸于.當(dāng)以、為頂點的三角形與、為頂點的三角形相似時,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明做了一個數(shù)學(xué)實驗:將一個圓柱形的空玻璃杯放入形狀相同的無水魚缸內(nèi),然后,小明對準(zhǔn)玻璃杯口勻速注水,如圖所示,在注水過程中,杯底始終緊貼魚缸底部,則下面可以近似地刻畫出無魚水缸內(nèi)最高水位與注水時間之間的變化情況的是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形OABC的一邊OAx軸的負(fù)半軸上,O是坐標(biāo)原點,A點坐標(biāo)為(-10,0),對角線ACOB相交于點DAC·OB=160.若反比例函數(shù)y=(x<0)的圖象經(jīng)過點D,并與BC的延長線交于點E,SOCESOAB=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點O(00),B(12)

1)若點Ay軸上,且三角形AOB的面積為2,求點A的坐標(biāo);

2)若點C的坐標(biāo)為(3,0),BDOC,且BDOC,求點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,OAC上一動點,過點O作直線MNBC,設(shè)MN交∠BCA的平分線于點E,交∠BCA的外角平分線于點F.若點O運(yùn)動到AC的中點,則∠ACB=_____°時,四邊形AECF是正方形.

查看答案和解析>>

同步練習(xí)冊答案