【題目】如圖,拋物線與軸交于兩點,與軸交于點.
(1)求拋物線的解析式;
(2)點是拋物線上的動點,且滿足,求出點的坐標;
(3)連接,點是軸一動點,點是拋物線上一動點,若以、、、為頂點的四邊形是平行四邊形時,請直接寫出點的坐標.
備用圖
【答案】(1);(2),,,;(3),,
【解析】
(1)由待定系數(shù)法求出解析式即可;
(2)先求出點C坐標,可得OA=OC=3,由面積關(guān)系列出方程即可求解;
(3)分兩種情況討論,利用平行四邊形的性質(zhì)可求解;
解:
(1)∵拋物線經(jīng)過點A(-3,0),點B(1,0),
∴,
解得:,
∴拋物線的解析式為:,
∵拋物線的解析式為:,與y軸交于點C,
∴點C坐標為(0,3),
即OA=OC=3;
(2)過點P作PM⊥AO于點M,PN⊥CO于點N,
設(shè)P(,),
∵ ,
∴,
∵AO=3,CO=3,
∴PM=2PN,即,
當點P在第一、三象限時,,
解得,,;
∴,,
當點P在第二、四象限時,,
解得,;
∴,;
(3)若BC為邊,且四邊形BCFE是平行四邊形,
∴CF∥BE,
∴點C與點F縱坐標相等,
∴,
解得,(舍去),
∴點F(-2,3),
若BC為邊,且四邊形BCFE是平行四邊形,
∴BE與CF互相平分,
∵BE中點縱坐標為0,且點C縱坐標為3,
∴點F的縱坐標為-3,
∴,
解得,
∴,,
∴或,
若BC為對角線,則四邊形BECF是平行四邊形,
∴BC與EF互相平分,
∴BC中點縱坐標為,且點E的縱坐標為0,
∴點F的縱坐標為3,
∴點F(-2,3),
綜上所述,點F坐標為:,,;
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標系中,正方形OABC的頂點O與原點重合,頂點A.C分別在x軸、y軸上,反比例函數(shù)的圖象與正方形的兩邊AB、BC分別交于點M、N,ND⊥x軸,垂足為D,連接OM、ON、MN.
下列結(jié)論:
①△OCN≌△OAM;
②ON=MN;
③四邊形DAMN與△MON面積相等;
④若∠MON=45°,MN=2,則點C的坐標為.
其中正確的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為半圓的直徑,點D在半圓弧上,過點D作AB的平行線與過點A半圓的切線交于點C,點E在AB上,若DE垂直平分BC,則=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,對稱軸為x=1的拋物線經(jīng)過A(﹣1,0),B(2,﹣3)兩點.
(1)求拋物線的解析式;
(2)P是拋物線上的動點,連接PO交直線AB于點Q,當Q是OP中點時,求點P的坐標;
(3)C在直線AB上,D在拋物線上,E在坐標平面內(nèi),以B,C,D,E為頂點的四邊形為正方形,直接寫出點E的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC三個頂點都在格點上,點A,B,C的坐標分別為A(﹣2,3),B(﹣3,1),C(0,1)請解答下列問題:
(1)△ABC與△A1B1C1關(guān)于原點O成中心對稱,畫出△A1B1C1并直接寫出點A的對應(yīng)點A1的坐標;
(2)畫出△ABC繞點C順時針旋轉(zhuǎn)90°后得到的△A2B2C,并求出線段AC旋轉(zhuǎn)時掃過的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按如下方法,將△ABC的三邊縮小到原來的,如圖,任取一點O,連結(jié)AO,BO,CO,并取它們的中點D、E、F,得△DEF;則下列說法錯誤的是( )
A.點O為位似中心且位似比為1:2
B.△ABC與△DEF是位似圖形
C.△ABC與△DEF是相似圖形
D.△ABC與△DEF的面積之比為4:1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD是一高為4米的平臺,AB是與CD底部相平的一棵樹,在平臺頂C點測得樹頂A點的仰角α=30°,從平臺底部向樹的方向水平前進3米到達點E,在點E處測得樹頂A點的仰角β=60°,求樹高AB(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點C(0,3),拋物線的頂點為A(2,0),與y軸交于點B(0,1),F在拋物線的對稱軸上,且縱坐標為1.點P是拋物線上的一個動點,過點P作PM⊥x軸于點M,交直線CF于點H,設(shè)點P的橫坐標為m.
(1)求拋物線的解析式;
(2)若點P在直線CF下方的拋物線上,用含m的代數(shù)式表示線段PH的長,并求出線段PH的最大值及此時點P的坐標;
(3)當PF﹣PM=1時,若將“使△PCF面積為2”的點P記作“巧點”,則存在多個“巧點”,且使△PCF的周長最小的點P也是一個“巧點”,請直接寫出所有“巧點”的個數(shù),并求出△PCF的周長最小時“巧點”的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=BD,點E,F分別在AB,AD上,且AE=DF,連接BF與DE相交于點G,連接CG與BD相交于點H,下列結(jié)論:
①△AED≌△DFB;②S四邊形 BCDG=CG2;③若AF=2DF,則BG=6GF
,其中正確的結(jié)論
A.只有①②.B.只有①③.C.只有②③.D.①②③.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com