【題目】如圖ABCD是一個正方形花園,E、F是它的兩個門,且DE=CF,要修建兩條路BE和AF,這兩條路等長嗎?它們有什么位置關(guān)系?請證明你的猜想.

【答案】解:BE=AF,BE⊥AF; 理由:∵四邊形ABCD是正方形,
∴AD=CD,DE=CF,
∴AE=DF,
又∠BAE=∠D=90°,AB=AD,
∴△BAE≌△ADF
∴BE=AF,∠ABE=∠FAD,
∵∠ABE+∠AEB=90°,
∴∠FAD+∠AEB=90°,
∴BE⊥AF.
故BE=AF,BE⊥AF.

【解析】由DE=CF可得AE=DF△DAF≌△ABE,然后根據(jù)全等三角形的對應角相等可得出BE與AF的關(guān)系. 如圖ABCD是一個正方形花園,E、F是它的兩個門,且DE=CF,要修建兩條路BE和AF,這兩條路等長嗎?它們有什么位置關(guān)系?請證明你的猜想.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,正方形ABCD的邊長為2,點M是BC的中點,P是線段MC上的一個動點(不與M、C重合),以AB為直徑作O,過點P作O的切線,交AD于點F,切點為E.

(1)求證:OFBE;

(2)設(shè)BP=x,AF=y,求y關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍;

(3)延長DC、FP交于點G,連接OE并延長交直線DC與H(圖2),問是否存在點P,使EFO∽△EHG(E、F、O與E、H、G為對應點)?如果存在,試求(2)中x和y的值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若一次函數(shù)y=﹣2x+b(b為常數(shù))的圖象經(jīng)過第二、三、四象限,則b的值可以是(寫出一個即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AC=5,BC=12,AB=13,D是BC的中點,求AD的長和△ABD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(12分)某蔬菜經(jīng)銷商去蔬菜生產(chǎn)基地批發(fā)某種蔬菜,已知這種蔬菜的批發(fā)量在20千克~60千克之間(含20千克和60千克)時,每千克批發(fā)價是5元;若超過60千克時,批發(fā)的這種蔬菜全部打八折,但批發(fā)總金額不得少于300元.

1)根據(jù)題意,填寫如表:

2)經(jīng)調(diào)查,該蔬菜經(jīng)銷商銷售該種蔬菜的日銷售量y(千克)與零售價x(元/千克)是一次函數(shù)關(guān)系,其圖象如圖,求出yx之間的函數(shù)關(guān)系式;

3)若該蔬菜經(jīng)銷商每日銷售此種蔬菜不低于75千克,且當日零售價不變,那么零售價定為多少時,該經(jīng)銷商銷售此種蔬菜的當日利潤最大?最大利潤為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程:x21=2x+1).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是(
A.當AB=BC時,它是菱形
B.當AC⊥BD時,它是菱形
C.當∠ABC=90°時,它是矩形
D.當AC=BD時,它是正方形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】祁陽縣某中學校團委開展關(guān)愛殘疾學生愛心捐書活動,全校師生踴躍捐贈各類書籍共3000本.為了解各類書籍的分布情況,從中隨機抽取了部分書籍分四類進行統(tǒng)計:A.藝術(shù)類;B.文學類;C.科普類;D.其他,并將統(tǒng)計結(jié)果繪制成如圖所示的兩幅不完整的統(tǒng)計圖.

(1)這次統(tǒng)計共抽取了      書籍,扇形統(tǒng)計圖中的m=      ,∠α的度數(shù)是      

(2)請將條形統(tǒng)計圖補充完整;

(3)估計全校師生共捐贈了多少本文學類書籍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形中,對角線, 相交于點, 是邊的中點,且,

(1)求證:

(2)求的值.

查看答案和解析>>

同步練習冊答案