【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點(diǎn),過(guò)點(diǎn)A作BC的平行線交BE的延長(zhǎng)線于點(diǎn)F,連接CF.
(1)求證:AF=DC;
(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論;
(3)在(2)的條件下,要使四邊形ADCF為正方形,在△ABC中應(yīng)添加什么條件,請(qǐng)直接把補(bǔ)充條件寫(xiě)在橫線上 (不需說(shuō)明理由).
【答案】(1)證明見(jiàn)解析 (2)答案見(jiàn)解析 (3)AB=AC
【解析】
(1)連接DF,證三角形AFE和三角形DBE全等,推出AF=BD,即可得出答案;
(2)根據(jù)平行四邊形的判定得出平行四邊形ADCF,求出AD=CD,根據(jù)菱形的判定得出即可;
(3)根據(jù)等腰三角形性質(zhì)求出AD⊥BC,推出∠ADC=90°,根據(jù)正方形的判定推出即可.
(1)證明:連接DF,
∵E為AD的中點(diǎn),
∴AE=DE,
∵AF∥BC,
∴∠AFE=∠DBE,
在△AFE和△DBE中,
∴△AFE≌△DBE(AAS),
∴EF=BE,
∵AE=DE,
∴四邊形AFDB是平行四邊形,
∴BD=AF,
∵AD為中線,
∴DC=BD,
∴AF=DC;
(2)四邊形ADCF的形狀是菱形,
證明:∵AF=DC,AF∥BC,
∴四邊形ADCF是平行四邊形,
∵AC⊥AB,
∴∠CAB=90°,
∵AD為中線,
∴AD=DC,
∴平行四邊形ADCF是菱形;
(3)解:AC=AB,
理由是:∵∠CAB=90°,AC=AB,AD為中線,
∴AD⊥BC,
∴∠ADC=90°,
∵四邊形ADCF是菱形,
∴四邊形ADCF是正方形,
故答案為:AC=AB.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,⊙M的圓心M在y軸上,⊙M與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C、D,過(guò)點(diǎn)A作⊙M的切線AP交y軸于點(diǎn)P,若點(diǎn)C的坐標(biāo)為(0,2),點(diǎn)A的坐標(biāo)為(-4,0),
(1)求證:∠PAC=∠CAO;
(2)求直線PA的解析式;
(3)若點(diǎn)Q為⊙M上任意一點(diǎn),連接OQ、PQ,問(wèn)的比值是否發(fā)生變化?若不變求出此值;若變化,說(shuō)明變化規(guī)律.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等邊三角形,CE是外角平分線,點(diǎn)D在AC上,連結(jié)BD并延長(zhǎng)與CE交于點(diǎn)E.
(1)求證:△ABD∽△CED.
(2)若AB=6,AD=2CD,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)G在邊AB上(不與點(diǎn)A,B重合),連接DG,作CE⊥DG于點(diǎn)E,AF⊥DG于點(diǎn)F,連接AE,CF.
(1)求證:DE=AF;
(2)若設(shè),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等式.
若等式中,已知是非零常量,請(qǐng)寫(xiě)出因變量與自變量的函數(shù)解析式;當(dāng)時(shí),求的最大值和最小值及對(duì)應(yīng)的的取值.
若等式中,是非零常量,請(qǐng)寫(xiě)出因變量與自變量的函數(shù)解析式,并判斷在什么范圍內(nèi)取值時(shí),隨的增大而增大.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在直角坐標(biāo)系中,一次函數(shù)的圖象與軸交于點(diǎn),與一次函數(shù)的圖象交于點(diǎn).
(1)求的值及的表達(dá)式;
(2)直線與軸交于點(diǎn),直線與y軸交于點(diǎn),求四邊形的面積;
(3)如圖2,已知矩形,,,,矩形的邊在軸上平移,若矩形與直線或有交點(diǎn),直接寫(xiě)出的取值范圍,
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD放置在平面直角坐標(biāo)系xOy中,已知A(-2,0),B(2,0),D(0,3),反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)點(diǎn)C.
(1)求此反比例函數(shù)的解析式;
(2)問(wèn)將平行四邊形ABCD向上平移多少個(gè)單位,能使點(diǎn)B落在雙曲線上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用適當(dāng)?shù)姆椒ń夥匠?/span>
(1)x2﹣3x=0
(2)x2+4x﹣5=0
(3)3x2+2=1﹣4x
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,點(diǎn)P為邊AB所在直線上一點(diǎn),連結(jié)CP,M為線段CP的中點(diǎn),若滿足∠ACP=∠MBA,則稱(chēng)點(diǎn)P為△ABC的“好點(diǎn)”.
(1)如圖2,當(dāng)∠ABC=90°時(shí),命題“線段AB上不存在“好點(diǎn)”為 (填“真”或“假”)命題,并說(shuō)明理由;
(2)如圖3,P是△ABC的BA延長(zhǎng)線的一個(gè) “好點(diǎn)”,若PC=4,PB=5,求AP的值;
(3)如圖4,在Rt△ABC中,∠CAB=90°,點(diǎn)P是△ABC的“好點(diǎn)”,若AC=4,AB=5,求AP的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com