【題目】如圖,在平面直角坐標(biāo)系中,雙曲線和直線y=kx+b交于AB兩點(diǎn),點(diǎn)A的坐標(biāo)為(﹣32),BCy軸于點(diǎn)C,且OC=6BC

1)求雙曲線和直線的解析式;

2)直接寫出不等式的解集.

【答案】解:(1點(diǎn)A﹣3,2)在雙曲線上,

,解得m=﹣6。

雙曲線的解析式為。

點(diǎn)B在雙曲線上,且OC=6BC,

設(shè)點(diǎn)B的坐標(biāo)為(a,6a),

,解得:a=±1(負(fù)值舍去)。點(diǎn)B的坐標(biāo)為(1,﹣6)。

直線y=kx+b過點(diǎn)A,B,

,解得:

直線的解析式為y=﹣2x﹣4。

2)根據(jù)圖象得:不等式的解集為﹣3x0x1。

【解析】

試題1)將A坐標(biāo)代入反比例解析式中求出m的值,確定出反比例解析式,根據(jù)OC=6BC,且B在反比例圖象上,設(shè)B坐標(biāo)為(a6a),代入反比例解析式中求出a的值,確定出B坐標(biāo),將AB坐標(biāo)代入一次函數(shù)解析式中求出kb的值,即可確定出一次函數(shù)解析式。

2)根據(jù)一次函數(shù)與反比例函數(shù)的兩交點(diǎn)AB的橫坐標(biāo),以及0,將x軸分為四個(gè)范圍,找出反比例圖象在一次函數(shù)圖象上方時(shí)x的范圍即可。 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,E,DAE上的一點(diǎn),且,連接BD,CD

試判斷BDAC的位置關(guān)系和數(shù)量關(guān)系,并說明理由;

如圖2,若將繞點(diǎn)E旋轉(zhuǎn)一定的角度后,試判斷BDAC的位置關(guān)系和數(shù)量關(guān)系是否發(fā)生變化,并說明理由;

如圖3,若將中的等腰直角三角形都換成等邊三角形,其他條件不變.

試猜想BDAC的數(shù)量關(guān)系,請(qǐng)直接寫出結(jié)論;

你能求出BDAC的夾角度數(shù)嗎?如果能,請(qǐng)直接寫出夾角度數(shù);如果不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知P(3,3),點(diǎn)B、A分別在x軸正半軸和y軸正半軸上,∠APB90°,則OAOB________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1的函數(shù)解析式為y=﹣2x+4,且l1與x軸交于點(diǎn)D,直線l2經(jīng)過點(diǎn)A、B,直線l1、l2交于點(diǎn)C.

(1)求直線l2的函數(shù)解析式;

(2)求ADC的面積;

(3)在直線l2上是否存在點(diǎn)P,使得ADP面積是ADC面積的2倍?如果存在,請(qǐng)求出P坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù),(k為常數(shù),k≠1).

(1)若點(diǎn)A(1,2)在這個(gè)函數(shù)的圖象上,求k的值;

(2)若在這個(gè)函數(shù)圖象的每一分支上,yx的增大而增大,求k的取值范圍;

(3)若k=13,試判斷點(diǎn)B(3,4),C(2,5)是否在這個(gè)函數(shù)的圖象上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC的頂點(diǎn)AC分別在軸和軸上,點(diǎn)B的坐標(biāo)為2,3。雙曲線的圖像經(jīng)過BC的中點(diǎn)D,且與AB交于點(diǎn)E,連接DE

1)求k的值及點(diǎn)E的坐標(biāo);

2)若點(diǎn)F是邊上一點(diǎn),且FBC∽△DEB,求直線FB的解析式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在給定的一張平行四邊形紙片上作一個(gè)菱形.甲、乙兩人的作法如下:

甲:連接AC,作AC的垂直平分線MN分別交AD,AC,BC于M,O,N,連接AN,CM,則四邊形ANCM是菱形.

乙:分別作A,B的平分線AE,BF,分別交BC,AD于E,F(xiàn),連接EF,則四邊形ABEF是菱形.

根據(jù)兩人的作法可判斷

A.甲正確,乙錯(cuò)誤 B.乙正確,甲錯(cuò)誤 C.甲、乙均正確 D.甲、乙均錯(cuò)誤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,EAB上一點(diǎn),FAD延長(zhǎng)線上一點(diǎn),且DF=BE

1)求證:CE=CF;

2)若點(diǎn)GAD上,且∠GCE=45°,則GE=BE+GD成立嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC,△ADE是等邊三角形,B,C,D在同一直線上.

求證:(1)CE=AC+CD;(2)∠ECD=60°.

查看答案和解析>>

同步練習(xí)冊(cè)答案