【題目】如圖,在正方形ABCD中,E是AB上一點(diǎn),F是AD延長(zhǎng)線上一點(diǎn),且DF=BE.
(1)求證:CE=CF;
(2)若點(diǎn)G在AD上,且∠GCE=45°,則GE=BE+GD成立嗎?為什么?
【答案】(1)見解析(2)成立
【解析】
試題(1)由DF=BE,四邊形ABCD為正方形可證△CEB≌△CFD,從而證出CE=CF.
(2)由(1)得,CE=CF,∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°又∠GCE=45°所以可
得∠GCE=∠GCF,故可證得△ECG≌△FCG,即EG=FG=GD+DF.又因?yàn)?/span>DF=BE,所以可證出GE=BE+GD成立.
試題解析:(1)在正方形ABCD中,
∴△CBE≌△CDF(SAS).
∴CE=CF.
(2)GE=BE+GD成立.
理由是:∵由(1)得:△CBE≌△CDF,
∴∠BCE=∠DCF,
∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,
又∵∠GCE=45°,∴∠GCF=∠GCE=45°. CE=CF
∵∠GCE=∠GCF, GC=GC
∴△ECG≌△FCG(SAS).
∴GE=GF.
∴GE=DF+GD=BE+GD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下列數(shù)表
根據(jù)數(shù)表反映的規(guī)律,猜想第6行與第6列的交叉點(diǎn)上的數(shù)應(yīng)為多少.
(1)第n行與第n列的交叉點(diǎn)上的數(shù)應(yīng)為多少.(用含正整數(shù)n的式子表示)
(2)計(jì)算左上角2×2的正方形里所有數(shù)字之和,即: 在數(shù)表中任取幾個(gè)2×2的正方形,計(jì)算其中所有數(shù)字之和,歸納你得出的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E為對(duì)角線BD上一動(dòng)點(diǎn).若AB=,當(dāng)∠EAC=15°時(shí),線段BE的長(zhǎng)度為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知反比例函數(shù)y= 的圖象在二四象限,一次函數(shù)為y=kx+b(b>0),直線x=1與x軸交于點(diǎn)B,與直線y=kx+b交于點(diǎn)A,直線x=3與x軸交于點(diǎn)C,與直線y=kx+b交于點(diǎn)D.
(1)若點(diǎn)A,D都在第一象限,求證:b>﹣3k;
(2)在(1)的條件下,設(shè)直線y=kx+b與x軸交于點(diǎn)E與y軸交于點(diǎn)F,當(dāng) = 且△OFE的面積等于 時(shí),求這個(gè)一次函數(shù)的解析式,并直接寫出不等式 >kx+b的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】多邊形的內(nèi)角和隨著邊數(shù)的變化而變化.設(shè)多邊形的邊數(shù)為n,內(nèi)角和為N,則變量N與n之間的關(guān)系可以表示為N=(n-2)180°.例如:如圖四邊形ABCD的內(nèi)角和:N=∠A+∠B+∠C+∠D=(4-2)×180°=360°問(wèn):(1)利用這個(gè)關(guān)系式計(jì)算五邊形的內(nèi)角和;(2)當(dāng)一個(gè)多邊形的內(nèi)角和N=720°時(shí),求其邊數(shù)n.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(6分)下面是小馬虎解的一道題
題目:在同一平面上,若∠BOA=70°,∠BOC=15°求∠AOC的度數(shù).
解:根據(jù)題意可畫出圖,
∵∠AOC=∠BOA-∠BOC
=70°-15°
=55°,
∴∠AOC=55°.
若你是老師,會(huì)判小馬虎滿分嗎?若會(huì),說(shuō)明理由.若不會(huì),請(qǐng)將小馬虎的的錯(cuò)誤指出,并給出你認(rèn)為正確的解法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小芳在本學(xué)期的體育測(cè)試中,1分鐘跳繩獲得了滿分,她的“滿分秘籍”如下:前20秒由于體力好,小芳速度均勻增加,20秒至50秒保持跳繩速度不變,后10秒進(jìn)行沖刺,速度再次均勻增加,最終獲得滿分,反映小芳1分鐘內(nèi)跳繩速度y(個(gè)/秒)與時(shí)間t(秒)關(guān)系的函數(shù)圖象大致為( )
A. A B. B C. C D. D
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙兩地相距900km,一列快車從甲地開往乙地,一列慢車從乙地開往甲地,兩車同時(shí)出發(fā),行了4小時(shí)后兩車相遇,快車的速度是慢車速度的2倍.
(1)請(qǐng)求出慢車與快車的速度?
(2)兩車出發(fā)后多長(zhǎng)時(shí)間,它們相距225千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用“☆”定義一種新運(yùn)算:對(duì)于任意有理數(shù)a和b,
規(guī)定a ☆. 如:1☆.
(1)求(﹣2)☆5的值;
(2)若 ☆3=8,求a的值;
(3)若m=2☆x, n=(-1-x)☆3(其中x為有理數(shù)),試比較大小m n(填“>”、“<”或“=”).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com