【題目】已知在數(shù)軸上 AB 兩點(diǎn)對(duì)應(yīng)數(shù)分別為﹣4,20

1)若 P 點(diǎn)為線(xiàn)段 AB 的中點(diǎn),求 P 點(diǎn)對(duì)應(yīng)的數(shù).

2)若點(diǎn) A、點(diǎn) B 同時(shí)分別以 2 個(gè)單位長(zhǎng)度/秒的速度相向運(yùn)動(dòng),點(diǎn) MM 點(diǎn)在原點(diǎn))同時(shí)以 4 個(gè)單位長(zhǎng)度/秒的速度向右運(yùn)動(dòng).幾秒后點(diǎn) M 到點(diǎn) A、點(diǎn) B 的距離相等?求此時(shí) M 對(duì)應(yīng)的數(shù).

3)在(2)的條件下,是否存在 M 點(diǎn),使 3MA=2MB?若存在,求出點(diǎn) M 對(duì)應(yīng)的數(shù);若不存在,請(qǐng)說(shuō)明理由.

【答案】18;(2t=2M表示8t=6,M表示24;(3.

【解析】

1)利用中點(diǎn)坐標(biāo)計(jì)算方法直接得出答案即可;
2)畫(huà)出圖形,設(shè)x秒后點(diǎn)M到點(diǎn)A、點(diǎn)B的距離相等,分別表示出AMBM的長(zhǎng)度,建立方程求得答案即可;
3)利用(2)中的AMBM的長(zhǎng)度,分兩種情況:MAB之間,ABM之間,結(jié)合3MA=2MB建立方程求得答案即可.

解:(1P點(diǎn)表示的數(shù)是;

2)如圖,


設(shè)x秒后點(diǎn)M到點(diǎn)A、點(diǎn)B的距離相等,
AM=4t--4+2t=2t+4,BM=20-2t-4t=20-6t
2t+4=20-6t,
解得t=2
M表示2×4=8
A、B重合時(shí),MA=BM,此時(shí)t=6,此時(shí)M表示24
3)如圖①,

AM=4t--4+2t=2t+4BM=20-2t-4t=20-6t,
3MA=2MB,
32t+4=220-6t),

,

∴點(diǎn)M表示,

如圖②,

AM=4t--4+2t=2t+4,BM=2t+4t-20=6t-20
3MA=2MB,
32t+4=26t-20),

∴點(diǎn)M表示

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,從點(diǎn)O發(fā)出四條射線(xiàn)OA,OB,OC,OD,已知∠AOC=∠BOD90°.

(1)若∠BOC35°,則∠AOB= ,∠COD= ;

(2)若∠BOC46°,則∠AOB= ,∠COD= .

(3)你發(fā)現(xiàn)了什么?你能說(shuō)明其中的道理嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)軸上三點(diǎn)M,O,N對(duì)應(yīng)的數(shù)分別為﹣2,0,4,點(diǎn)P為數(shù)軸上任意一點(diǎn),其對(duì)應(yīng)的數(shù)為x

1)如果點(diǎn)P到點(diǎn)M點(diǎn)N的距離相等,則x   

2)數(shù)軸上是否存在點(diǎn)P,使點(diǎn)P到點(diǎn)M、點(diǎn)N的距離之和是10?若存在,求出x的值;若不存在,請(qǐng)說(shuō)明理由.

3)如果點(diǎn)P以每分鐘1個(gè)單位長(zhǎng)度的速度從點(diǎn)O向左運(yùn)動(dòng),同時(shí)點(diǎn)M和點(diǎn)N分別以每分鐘2個(gè)單位長(zhǎng)度和每分鐘3個(gè)單位長(zhǎng)度的速度也向左運(yùn)動(dòng).設(shè)t分鐘時(shí)點(diǎn)P到點(diǎn)M、點(diǎn)N的距離相等,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,為美化校園環(huán)境,某校計(jì)劃在一塊長(zhǎng)為20m,寬為15m的長(zhǎng)方形空地上修建一條寬為am)的甬道,余下的部分鋪設(shè)草坪建成綠地.

1)甬道的面積為   m2,綠地的面積為   m2(用含a的代數(shù)式表示);

2)已知某公園公司修建甬道,綠地的造價(jià)W1(元),W2(元)與修建面積S之間的函數(shù)關(guān)系如圖2所示.①園林公司修建一平方米的甬道,綠地的造價(jià)分別為   元,   元.②直接寫(xiě)出修建甬道的造價(jià)W1(元),修建綠地的造價(jià)W2(元)與am)的關(guān)系式;③如果學(xué)校決定由該公司承建此項(xiàng)目,并要求修建的甬道寬度不少于2m且不超過(guò)5m,那么甬道寬為多少時(shí),修建的甬道和綠地的總造價(jià)最低,最低總造價(jià)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)y1=2+bx+c與x軸交于點(diǎn)A、B,交y軸于點(diǎn)C(0,﹣2),且拋物線(xiàn)對(duì)稱(chēng)軸x=﹣2交x軸于點(diǎn)D,E是拋物線(xiàn)在第3象限內(nèi)一動(dòng)點(diǎn).

(1)求拋物線(xiàn)y1的解析式;

(2)將△OCD沿CD翻折后,O點(diǎn)對(duì)稱(chēng)點(diǎn)O′是否在拋物線(xiàn)y1上?請(qǐng)說(shuō)明理由.

(3)若點(diǎn)E關(guān)于直線(xiàn)CD的對(duì)稱(chēng)點(diǎn)E′恰好落在x軸上,過(guò)E′作x軸的垂線(xiàn)交拋物線(xiàn)y1于點(diǎn)F,①求點(diǎn)F的坐標(biāo);②直線(xiàn)CD上是否存在點(diǎn)P,使|PE﹣PF|最大?若存在,試寫(xiě)出|PE﹣PF|最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一組數(shù),-,,-,…,(從左往右數(shù),第1個(gè)數(shù)是,第2個(gè)數(shù)是-,第3個(gè)數(shù)是,第4個(gè)數(shù)是-,依此類(lèi)推,第n個(gè)數(shù)是).

(1)分別寫(xiě)出第5個(gè)、第6個(gè)數(shù);

(2)記這組數(shù)的前n個(gè)數(shù)的和是sn,如:

s1(可表示為1+);

s2+(-)=(可表示為1-);

s 3+(-)+(可表示為1+);

s4+(-)++(-)=(可表示為1-).

請(qǐng)計(jì)算S99的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,數(shù)軸上線(xiàn)段AB=2(單位長(zhǎng)度),線(xiàn)段CD=4(單位長(zhǎng)度),點(diǎn)A在數(shù)軸上表示的數(shù)是-10,點(diǎn)C在數(shù)軸上表示的數(shù)是16.若線(xiàn)段AB以每秒6個(gè)單位長(zhǎng)度的速度向右勻速運(yùn)動(dòng),同時(shí)線(xiàn)段CD以每秒2個(gè)單位長(zhǎng)度的速度向左勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t s.

(1)當(dāng)點(diǎn)B與點(diǎn)C相遇時(shí),點(diǎn)A、點(diǎn)D在數(shù)軸上表示的數(shù)分別為________;

(2)當(dāng)t為何值時(shí),點(diǎn)B剛好與線(xiàn)段CD的中點(diǎn)重合;

(3)當(dāng)運(yùn)動(dòng)到BC=8(單位長(zhǎng)度)時(shí),求出此時(shí)點(diǎn)B在數(shù)軸上表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義一種對(duì)正整數(shù)n“F”運(yùn)算:①當(dāng)n為奇數(shù)時(shí),F(n)=3n+1;②當(dāng)n為偶數(shù)時(shí),F(n)=(其中k是使F(n)為奇數(shù)的正整數(shù))……,兩種運(yùn)算交替重復(fù)進(jìn)行,例如,取n=24,則:

n=13,則第2018“F”運(yùn)算的結(jié)果是(  )

A. 1 B. 4 C. 2018 D. 42018

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于三個(gè)數(shù)a,b,c,M{a,b,c}表示這三個(gè)數(shù)的平均數(shù),min{a,b,c}表示這三個(gè)數(shù)中最小的數(shù).例如:M{-1,2,3}=,min{-1,2,3}=-1,如果M{3,2x+1,4x-1}=min{2,-x+3,5x},那么x=____________.

查看答案和解析>>

同步練習(xí)冊(cè)答案