【題目】如圖AB∥CD,點H在CD上,點E、F在AB上,點G在AB、CD之間,連接FG、GH、HE,HG⊥HE,垂足為H,F(xiàn)G⊥HG,垂足為G.
(1)求證:∠EHC+∠GFE=180°.
(2)如圖2,HM平分∠CHG,交AB于點M,GK平分∠FGH,交HM于點K,求證:∠GHD=2∠EHM.
(3)如圖3,EP平分∠FEH,交HM于點N,交GK于點P,若∠BFG=50°,求∠NPK的度數(shù).
【答案】(1)證明見解析;(2)證明見解析;(3)20°
【解析】
(1)根據(jù)HG⊥HE,FG⊥HG可證明FG∥EH,從而得∠GFE+∠HEF=180°,再根據(jù)AB∥CD可得∠BEH=∠CHE,進而可得結(jié)論;
(2)設(shè)∠EHM=x,根據(jù)MH是∠CHG的平分線可得∠MHG=90°-x,∠EHC=90°-2x,根據(jù)平行線的性質(zhì)得∠HMB=90°-x,從而得∠HMB=∠MHG,再由平行線的性質(zhì)得∠BMH+∠DHM=180°,從而可得結(jié)論;
(3)分別延長FG,GK,交CD于R,交HE于S,由AB∥CD得∠HRG=50°,由FG⊥HG得∠GHR=40°,由MH平分∠CHG得∠CHE=50°,由AB∥CD得∠MEH=∠CHE=50°,可得∠SEP=25°,最后由三角形的外角可得結(jié)論.
(1)∵HG⊥HE,FG⊥HG
∴FG∥EH,
∴∠GFE+∠HEF=180°,
∵AB∥CD
∴∠BEH=∠CHE
∴∠EHC+∠GFE=180°
(2)設(shè)∠EHM=x,
∵HG⊥HE,
∴∠GHK=90°-x,
∵MH平分∠CHG,
∴∠EHC=90°-2x,
∵AB∥CD
∴∠HMB=90°-x,
∴∠HMB=∠MHG=90°-x,
∵AB∥CD,
∴∠BMH+∠DHM=180°,即∠BMH+∠GHM+∠GHD =180°,
∴90°-x+90°-x+∠GHD =180°,解得,∠GHD =2x,
∴∠GHD=2∠EHM;
(3)延長FG,GK,交CD于R,交HE于S,如圖,
∵AB∥CD,∠BFG=50°
∴∠HRG=50°
∵FG⊥HG,
∴∠GHR=40°,
∵HG⊥HE,
∴∠EHG=90°,
∴∠CHE=180°-90°-40°=50°,
∵AB∥CD,
∴∠FEH=∠CHE=50°,
∵EP是∠HEF的平分線,
∴∠SEP=∠FEH=25°,
∵GH平分∠HGF,
∴∠HGS=∠HGF=45°,
∴∠HSG=45°,
∵∠SEP+∠SPE=∠HSP=45°,
∴∠EPS=20°,即 ∠NPK=20°.
科目:初中數(shù)學 來源: 題型:
【題目】某公司開發(fā)生產(chǎn)960件新產(chǎn)品,需要加工后才能投放市場,現(xiàn)甲、乙兩個工廠都想加工這批產(chǎn)品,已知甲工廠單獨完成這批產(chǎn)品比乙工廠單獨完成這批產(chǎn)品多用20天,而乙工廠每天加工的件數(shù)是甲工廠每天加工件數(shù)的1.5倍,公司需付甲工廠加工費每天80元,乙工廠每天加工費用120元。
(1)求甲、乙兩個工廠每天各能加工多少個新產(chǎn)品?
(2)公司制定產(chǎn)品加工方案如下:可以由每個廠家單獨完成,也可以由兩個廠家同時合作完成。在加工過程中,公司派一名工程師每天來廠進行技術(shù)指導,并負擔每天5元的午餐補助費,請你幫助公司選擇一種既省時又省力的方案,并說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ABC=45°,∠BCA=30°,點D在BC上,點E在△ABC外,且AD=AE=CE,AD⊥AE,則的值為____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知輪船A在燈塔P的北偏東30°的方向上,輪船B在燈塔P的南偏東70°的方向上.
(1)求從燈塔P看兩輪船的視角(即∠APB)的度數(shù)?
(2)輪船C在∠APB的角平分線上,則輪船C在燈塔P的什么方位?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,點D是邊BC上的點(與B,C兩點不重合),過點D作DE∥AC,DF∥AB,分別交AB,AC于E,F(xiàn)兩點,下列說法正確的是( 。
A. 若AD⊥BC,則四邊形AEDF是矩形
B. 若AD垂直平分BC,則四邊形AEDF是矩形
C. 若BD=CD,則四邊形AEDF是菱形
D. 若AD平分∠BAC,則四邊形AEDF是菱形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國南宋著名數(shù)學家秦九韶的著作《數(shù)書九章》里記載有這樣一道題:“問有沙田一塊,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知為田幾何?”這道題講的是:有一塊三角形沙田,三條邊長分別為5里,12里,13里,問這塊沙田面積有多大?題中“里”是我國市制長度單位,1里=500米,則該沙田的面積為( 。
A. 7.5平方千米 B. 15平方千米 C. 75平方千米 D. 750平方千米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把所有正偶數(shù)從小到大排列,并按如下規(guī)律分組:
第一組:2,4;
第二組:6,8,10,12;
第三組:14,16,18,20,22,24
第四組:26,28,30,32,34,36,38,40
……
則現(xiàn)有等式Am=(i,j)表示正偶數(shù)m是第i組第j個數(shù)(從左到右數(shù)),如A10=(2,3),則A2018=( )
A. (31,63) B. (32,17) C. (33,16) D. (34,2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示的運算程序中,若開始輸入的x值為100,我們發(fā)現(xiàn)第1次輸出的結(jié)果為50,第2次輸出的結(jié)果為25,…,第2018次輸出的結(jié)果為_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com