【題目】四邊形ABCD是一個長方形,將AD沿某一直線AF(F為折痕與CD邊的交點)折疊,使點D落在BC邊上的某一點E處,請用沒有刻度的直尺與圓規(guī)找出點E與折痕AF,并在折痕AF上找一點P滿足BP+EP最小.
【答案】見詳解.
【解析】
根據(jù)題意,以A為圓心,AD長為半徑畫弧,與邊BC相交于點E,連接AE,作∠DAE的角平分線,交CD于點F ,連接AF即可;連接DE ,由點E與點D關(guān)于AF對稱,則連接BD,與AF相交于點P,連接PE ,此時BP+EP為最小值.
解:如圖:
①以A為圓心,AD長為半徑畫弧,與邊BC相交于點E,連接AE,即點E為所求點;
②作∠DAE的角平分線,交CD于點F ,連接AF,即AF為折痕;
③連接DE,由DF=EF,則AF垂直平分DE,
∴點D與點E關(guān)于AF對稱,則
連接BD,BD與AF相交于點P,連接PE,則PE=PD,此時PE+PB為最小值.
最小值為:PE+PB=PD+PB=BD.
科目:初中數(shù)學 來源: 題型:
【題目】定義:如果三角形有一邊上的中線長恰好等于這邊的長,那么這個三角形叫“恰等三角形”,這條中線叫“恰等中線”.
(直角三角形中的“恰等中線”)
(1)如圖1,在△ABC中,∠C=90°,AC=,BC=2,AM為△ABC的中線.求證:AM是“恰等中線”.
(等腰三角形中的“恰等中線”)
(2)已知,等腰△ABC是“恰等三角形”,AB=AC=20,求底邊BC的平方.
(一般三角形中的“恰等中線”)
(3)如圖2,若AM是△ABC的“恰等中線”,則BC2,AB2,AC2之間的數(shù)量關(guān)系為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市經(jīng)銷一種銷售成本為每件40元的商品.據(jù)市場調(diào)查分析,如果按每件50元銷售,一周能售出500件,若銷售單價每漲1元,每周銷售量就減少10件.設銷售單價為每件x元(x≥50),一周的銷售量為y件.
(1)寫出y與x的函數(shù)關(guān)系式.(標明x的取值范圍)
(2)設一周的銷售利潤為S,寫出S與x的函數(shù)關(guān)系式,并確定當單價在什么范圍內(nèi)變化時,利潤隨著單價的增大而增大?
(3)在超市對該種商品投入不超過10 000元的情況下,使得一周銷售利潤達到8 000元,銷售單價應定為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】早晨,小明步行到離家900米的學校去上學,到學校時發(fā)現(xiàn)眼鏡忘在家中,于是他立即按原路步行回家,拿到眼鏡后立即按原路騎自行車返回學校.已知小明步行從學校到家所用的時間比他騎自行車從家到學校所用的時間多10分鐘,小明騎自行車速度是步行速度的3倍.
(1)求小明步行速度(單位:米/分)是多少;
(2)下午放學后,小明騎自行車回到家,然后步行去圖書館,如果小明騎自行車和步行的速度不變,小明步行從家到圖書館的時間不超過騎自行車從學校到家時間的2倍,那么小明家與圖書館之間的路程最多是多少米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】凱里市某文具店某種型號的計算器每只進價12元,售價20元,多買優(yōu)惠,優(yōu)勢方法是:凡是一次買10只以上的,每多買一只,所買的全部計算器每只就降價0.1元,例如:某人買18只計算器,于是每只降價0.1×(18﹣10)=0.8(元),因此所買的18只計算器都按每只19.2元的價格購買,但是每只計算器的最低售價為16元.
(1)求一次至少購買多少只計算器,才能以最低價購買?
(2)求寫出該文具店一次銷售x(x>10)只時,所獲利潤y(元)與x(只)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)一天,甲顧客購買了46只,乙顧客購買了50只,店主發(fā)現(xiàn)賣46只賺的錢反而比賣50只賺的錢多,請你說明發(fā)生這一現(xiàn)象的原因;當10<x≤50時,為了獲得最大利潤,店家一次應賣多少只?這時的售價是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一段拋物線:,記為,它與x軸交于點O,;將繞點旋轉(zhuǎn)得,交x軸于點;將繞點旋轉(zhuǎn)得,交x軸于點;如此進行下去,得到一“波浪線”,若點在此“波浪線”上,則m的值為
A. 4 B. C. D. 6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為保護和改善環(huán)境,發(fā)展新經(jīng)濟,國家出臺了不限行、不限購等諸多新能源汽車優(yōu)惠政策鼓勵新能源汽車的發(fā)展,為響應號召,某市某汽車專賣店銷售A,B兩種型號的新能源汽車共25輛,這兩種型號的新能源汽車的進價、售價如下表:
進價萬元輛 | 售價萬元輛 | |
A型 | 10 | |
B型 | 15 |
如何進貨,進貨款恰好為325萬元?
如何進貨,該專賣店售完A,B兩種型號的新能源汽車后獲利最多且不超過進貨價的,此時利潤為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對一個矩形ABCD及給出如下定義:在同一平面內(nèi),如果上存在一點,使得這點到矩形ABCD的四個頂點的距離相等,那么稱矩形ABCD是的“隨從矩形”如圖,在平面直角坐標系xOy中,直線l:交x軸于點M,的半徑為4,矩形ABCD沿直線運動在直線l上,,軸,當矩形ABCD是的“隨從矩形”時,點A的坐標為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,對角線AC⊥BD于點O,且AO=BO=4,CO=8,∠ADB=2∠ACB,則四邊形ABCD的面積為( )
A.48B.42C.36D.32
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com