【題目】我們規(guī)定,若關(guān)于的一元一次方程的解為,則稱(chēng)該方程為“奇異方程”.例如:的解為,則該方程是“奇異方程”.請(qǐng)根據(jù)上述規(guī)定解答下列問(wèn)題:
(Ⅰ)判斷方程________(回答“是”或“不是”)“奇異方程”;
(Ⅱ)若,有符合要求的“奇異方程”嗎?若有,求的值;若沒(méi)有,請(qǐng)說(shuō)明理由.
(Ⅲ)若關(guān)于的一元一次方程和都是“奇異方程”,求代數(shù)式+的值.
【答案】(Ⅰ)不是;(Ⅱ)時(shí)有符合要求的“奇異方程”;(Ⅲ).
【解析】
(Ⅰ)解方程,并計(jì)算對(duì)應(yīng)b-a的值與方程的解不相等,所以不是奇異方程;
(Ⅱ)根據(jù)奇異方程的定義即可得出關(guān)于b的方程,解方程即可;
(Ⅲ)根據(jù)奇異方程的概念列式得到關(guān)于m、n的兩個(gè)方程,聯(lián)立求解得到m、n的關(guān)系,然后代入化簡(jiǎn)后的代數(shù)式進(jìn)行計(jì)算即可求解.
(Ⅰ):∵,
∴,
∵,
,
∴不是奇異方程;
故答案為:不是;
(Ⅱ)∵,
∴3x=b,解得,x=
若方程3x=b有符合要求的“奇異方程”
∴,
∴,
∴,
即時(shí)有符合要求的“奇異方程”;
(Ⅲ)關(guān)于的一元一次方程和都是“奇異方程”,則有:
,
整理得:,,
兩式相減得,,
∴
,
,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知Rt△ABC中,∠ACB=90°,CD⊥AB于D,∠BAC的平分線分別交BC,CD于E、F.
(1)試說(shuō)明△CEF是等腰三角形.
(2)若點(diǎn)E恰好在線段AB的垂直平分線上,試說(shuō)明線段AC與線段AB之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩名射擊選手在10次射擊訓(xùn)練中的成績(jī)統(tǒng)計(jì)圖(部分)如圖所示:
教練根據(jù)甲、乙兩名射擊選手的成績(jī)繪制了如下數(shù)據(jù)分析表:
選手 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
甲 | 8 | 8 | c | |
乙 | 7. 5 | 6和9 | 2. 65 |
根據(jù)以上信息,請(qǐng)解答下面的問(wèn)題:
(1)補(bǔ)全甲選手10次成績(jī)頻數(shù)分布圖;
(2)求的值;
(3)教練根據(jù)兩名選手的10次成績(jī),決定選擇甲選手參加射擊比賽,教練的理由是什么?(至少?gòu)膬蓚(gè)不同角度說(shuō)明理由).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,將筆記本活頁(yè)一角折過(guò)去,使角的頂點(diǎn)A落在處,BC為折痕。
(1)圖①中,若∠1=30°,求∠的度數(shù);
(2)如果又將活頁(yè)的另一角斜折過(guò)去,使BD邊與BA重合,折痕為BE,如圖②所示,∠1=30°,求∠2以及∠的度數(shù);
(3)如果在圖②中改變∠1的大小,則的位置也隨之改變,那么問(wèn)題(2)中∠的大小是否改變?請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D在BC上,BD=DC,過(guò)點(diǎn)D作DE⊥AC,垂足為E,⊙O經(jīng)過(guò)A,B,D三點(diǎn).
(1)求證:AB是⊙O的直徑;
(2)判斷DE與⊙O的位置關(guān)系,并加以證明;
(3)若⊙O的半徑為3,∠BAC=60°,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,數(shù)軸上的點(diǎn)A,B,C,D,E表示連續(xù)的五個(gè)整數(shù),對(duì)應(yīng)的數(shù)分別為a,b,c,d,e.
(1)若a=-3,則e = ;
(2)若a+e=0,則代數(shù)式b+c+d= ;
(3)若d是最大的負(fù)整數(shù),求代數(shù)式的值(寫(xiě)出求解過(guò)程).
(4)若e=4,F也為數(shù)軸上一點(diǎn),且BE=2FE,則F表示的數(shù)為 ;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中:①過(guò)一點(diǎn)有且只有一條直線與已知直線平行;②過(guò)一點(diǎn)有且只有一條直線與已知直線垂直;③垂直于同一直線的兩條直線互相平行;④平行于同一直線的兩條直線互相平行;⑤兩條直線被第三條直線所截,如果同旁內(nèi)角相等,那么這兩條直線互相平行;⑥連結(jié)、兩點(diǎn)的線段就是、兩點(diǎn)之間的距離,其中正確的有( )
A.個(gè)B.個(gè)C.個(gè)D.個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為了解八年級(jí)學(xué)生的體能狀況,從八年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行體能測(cè)試,測(cè)試結(jié)果分為A,B,C,D四個(gè)等級(jí).
請(qǐng)根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問(wèn)題:
(1)本次抽樣調(diào)查共抽取了 名學(xué)生?測(cè)試結(jié)果為C等級(jí)的學(xué)生數(shù)是 ,并補(bǔ)全條形圖;
(2)若從體能為A等級(jí)的2名男生2名女生中隨機(jī)的抽取2名學(xué)生,做為該校培養(yǎng)運(yùn)動(dòng)員的重點(diǎn)對(duì)象,請(qǐng)用列表法或畫(huà)樹(shù)狀圖的方法求所抽取的兩名恰好都是男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,D為等邊三角形ABC內(nèi)的一點(diǎn), DA=5,DB=4,DC=3,將線段AD以點(diǎn)A為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線段AD',下列結(jié)論:①點(diǎn)D與點(diǎn)D'的距離為5;②∠ADC=150°;③△ACD'可以由△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到;④點(diǎn)D到CD'的距離為3;⑤S四邊形ABCD′=6+ ,其中正確的有( 。
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com