【題目】在一個(gè)不透明的盒子里,裝有三個(gè)分別寫有數(shù)字1,2,3的小球,它們的形狀、大小、質(zhì)地等完全相同,先從盒子里隨機(jī)取出一個(gè)小球,記下數(shù)字后放回盒子,搖勻后再隨機(jī)取出一個(gè)小球,記下數(shù)字.請你用畫樹形圖或列表的方法,求下列事件的概率:
(1)兩次取出小球上的數(shù)字相同的概率;
(2)兩次取出小球上的數(shù)字之和大于3的概率.

【答案】
(1)解:由題意,列表如下:

共有9種等可能的結(jié)果,并且它們出現(xiàn)的可能性相等,
兩次取出小球上的數(shù)字相同的情況數(shù)有3種,分別是(1,1),(2,2),(3,3)
∴P(兩次取出小球上的數(shù)字相同)= ;
(2)解:兩次取出小球上的數(shù)字之和大于3的情況有6種,分別是(1,3),(2,2),(2,3),(3,1),(3,2),(3,3),
∴P(兩次取出小球上的數(shù)字之和大于3)= .
【解析】(1)事件分兩個(gè)步驟,可列出表,共9種機(jī)會均等的結(jié)果,3種情況相同,利用概率公式可求出結(jié)果;(2)列出數(shù)字之和大于3的情況有6種,運(yùn)用公式可求出概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=ax+b(a≠0)與二次函數(shù)y=ax2+bx+c(a≠0)在同一平面直角坐標(biāo)系中的圖象可能是( 。
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,數(shù)軸上標(biāo)出若干個(gè)點(diǎn),每相鄰兩點(diǎn)相距一個(gè)單位長度,點(diǎn)A,B,C,D對應(yīng)的數(shù)分別是數(shù)a,b,c,d,且d-2a=10,那么數(shù)軸的原點(diǎn)應(yīng)是( )

A.點(diǎn)A
B.點(diǎn)B
C.點(diǎn)C
D.點(diǎn)D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知DCFP,∠1=∠2,∠FED=28,∠AGF=80,FH平分∠EFG

(1)說明:DCAB;

(2)求∠PFH的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】雅安地震發(fā)生后,全國人民抗震救災(zāi),眾志成城,值地震發(fā)生一周年之際,某地政府又籌集了重建家園的必需物資120噸打算運(yùn)往災(zāi)區(qū),現(xiàn)有甲、乙、丙三種車型供選擇,每輛車的運(yùn)載能力和運(yùn)費(fèi)如下表所示:(假設(shè)每輛車均滿載)

車型

汽車運(yùn)載量(噸/輛)

5

8

10

汽車運(yùn)費(fèi)(元/輛)

400

500

600

(1)全部物資可用甲型車8輛,乙型車5輛,丙型車 來運(yùn)送.

(2)若全部物資都用甲、乙兩種車型來運(yùn)送,需運(yùn)費(fèi)8200元,問分別需甲、乙兩種車型各幾輛?

(3)為了節(jié)省運(yùn)費(fèi),該地政府打算用甲、乙、丙三種車型同時(shí)參與運(yùn)送,已知它們的總輛數(shù)為14輛,你能分別求出三種車型的輛數(shù)嗎?此時(shí)的運(yùn)費(fèi)又是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種小商品的成本價(jià)為10元/kg,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量w(kg)與銷售價(jià)x(元/kg)有如下關(guān)系w=﹣2x+100,設(shè)這種產(chǎn)品每天的銷售利潤為y(元).
(1)求y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)售價(jià)定為多少元時(shí),每天的銷售利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖ABC的角平分線BD,CE相交于點(diǎn)P.

(1)如果A=80,求BPC= .

(2)如圖,過點(diǎn)P作直線MNBC,分別交ABAC于點(diǎn)MN,試求MPB+NPC的度數(shù)(用含A的代數(shù)式表示) .

(3)將直線MN繞點(diǎn)P旋轉(zhuǎn)。

(i)當(dāng)直線MNABAC的交點(diǎn)仍分別在線段ABAC上時(shí),如圖,試探索MPB,NPC,A三者之間的數(shù)量關(guān)系,并說明你的理由。

(ii)當(dāng)直線MNAB的交點(diǎn)仍在線段AB,而與AC的交點(diǎn)在AC的延長線上時(shí),如圖,試問(i)MPB,NPC,A三者之間的數(shù)量關(guān)系是否仍然成立?若成立,請說明你的理由;若不成立,請給出MPB,NPC,A三者之間的數(shù)量關(guān)系,并說明你的理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實(shí)踐操作:如圖,在 中,∠ABC=90°,利用直尺和圓規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)的字母(保留作圖痕跡,不寫作法):

(1)作∠BCA的角平分線,交AB于點(diǎn)O;
(2)以O(shè)為圓心,OB為半徑作圓.
綜合運(yùn)用:在你所作的圖中,
(3)AC與⊙O的位置關(guān)系是(直接寫出答案);
(4)若BC=6,AB=8,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊答案