【題目】如果等腰三角形的一邊長為8,另一邊長為10,那么連結(jié)這個三角形各邊的中點所成的三角形的周長為 _______.
【答案】13或14
【解析】
作圖分析,根據(jù)中位線定理得出△DEF的周長等于△ABC的周長的一半,再分兩種情況討論,從而求得其周長.
解:如圖,△ABC中,AB=AC=8cm,BC=10cm,D、E、F分別是邊AB、BC、AC的中點.
求△DEF的周長.
①∵AB=AC=8,BC=10,D、E、F分別是邊AB、BC、AC的中點,
∴DE=BC,DF=AC,EF=AB,
∴△DEF的周長=DE+DF+EF=(8+8+10)=13,
②∵AB=AC=10,BC=8,D、E、F分別是邊AB、BC、AC的中點,
∴DE=BC,DF=AC,EF=AB,
∴△DEF的周長=DE+DF+EF=(8+10+10)=14,
故答案為:13或14.
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點A(﹣1,0)、C(0,3),與x軸交于另一點B,拋物線的頂點為D.
(1)求此二次函數(shù)解析式;
(2)連接DC、BC、DB,求證:△BCD是直角三角形;
(3)在對稱軸右側(cè)的拋物線上是否存在點P,使得△PDC為等腰三角形?若存在,求出符合條件的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(12分)如圖1,點O是正方形ABCD兩對角線的交點,分別延長OD到點G,OC到點E,使OG=2OD,OE=2OC,然后以OG、OE為鄰邊作正方形OEFG,連接AG,DE.
(1)求證:DE⊥AG;
(2)正方形ABCD固定,將正方形OEFG繞點O逆時針旋轉(zhuǎn)α角(0°<α<360°)得到正方形OE′F′G′,如圖2.
①在旋轉(zhuǎn)過程中,當∠OAG′是直角時,求α的度數(shù);
②若正方形ABCD的邊長為1,在旋轉(zhuǎn)過程中,求AF′長的最大值和此時α的度數(shù),直接寫出結(jié)果不必說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過,兩點,與x軸的另一個交點為C,頂點為D,連結(jié)CD.
(1)求該拋物線的表達式;
(2)點P為該拋物線上一動點(與點B、C不重合),設點P的橫坐標為t.
①當點P在直線BC的下方運動時,求的面積的最大值;
②該拋物線上是否存在點P,使得若存在,求出所有點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(題文)如圖,在等腰直角三角形MNC中,CN=MN=,將△MNC繞點C順時針旋轉(zhuǎn)60°,得到△ABC,連接AM,BM,BM交AC于點O.
(1)∠NCO的度數(shù)為________;
(2)求證:△CAM為等邊三角形;
(3)連接AN,求線段AN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】
情境觀察:將矩形ABCD紙片沿對角線AC剪開,得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點A′與點A重合,并繞點A按逆時針方向旋轉(zhuǎn),使點D、A(A′)、B在同一條直線上,如圖2所示.
觀察圖2可知:與BC相等的線段是 ▲ ,∠CAC′= ▲ °.
問題探究:如圖3,△ABC中,AG⊥BC于點G,以A為直角頂點,分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過點E、F作射線GA的垂線,垂足分別為P、Q. 試探究EP與FQ之間的數(shù)量關系,并證明你的結(jié)論.
拓展延伸:如圖4,△ABC中,AG⊥BC于點G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點H. 若AB=k AE,AC=k AF,試探究HE與HF之間的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,線段AC=n+1(其中n為正整數(shù)),點B在線段AC上,在線段AC同側(cè)作菱形ABMN與菱形BCEF,點F在BM邊上,AB=n,∠ABM=60°,連接AM、ME、EA得到△AME.當AB=1時,△AME的面積記為S1;當AB=2時,△AME的面積記為S2;當AB=3時,△AME的面積記為S3;…;當AB=n時,△AME的面積記為Sn,當n≥2時,Sn﹣Sn﹣1=__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平面直角坐標系xOy中,對于點A和線段BC,給出如下定義:若△ABC是等腰直角三角形,則稱點A為BC的“等直點”;特別的,若△ABC是以BC為斜邊的等腰直角三角形,則稱點A為BC的“完美等直點”.
(1)若B(﹣2,0),C(2,0),則在D(0,2),E(4,4),F(﹣2,﹣4),G(0,)中,線段BC的“等直點”是 ;
(2)已知B(0,﹣6),C(8,0).
①若雙曲線y=上存在點A,使得點A為BC的“完美等直點”,求k的值;
②在直線y=x+6上是否存在點P,使得點P為BC的“等直點”?若存在,求出點P的坐標;若不存在,請說明理由;
(3)若B(0,2),C(2,0),⊙T的半徑為3,圓心為T(t,0).當在⊙T內(nèi)部,恰有三個點是線段BC的“等直點”時,直接寫出t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com