【題目】(題文)如圖,在等腰直角三角形MNC中,CN=MN=,將△MNC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°,得到△ABC,連接AM,BM,BM交AC于點(diǎn)O.
(1)∠NCO的度數(shù)為________;
(2)求證:△CAM為等邊三角形;
(3)連接AN,求線段AN的長(zhǎng).
【答案】(1)15°;(2)證明見(jiàn)解析;(3)
【解析】(1)由旋轉(zhuǎn)可得∠ACM=60°,再根據(jù)等腰直角三角形MNC中,∠MCN=45°,運(yùn)用角的和差關(guān)系進(jìn)行計(jì)算即可得到∠NCO的度數(shù);
(2)根據(jù)有一個(gè)角是60°的等腰三角形是等邊三角形進(jìn)行證明即可;
(3)根據(jù)△MNC是等腰直角三角形,△ACM是等邊三角形,判定△ACN≌△AMN,再根據(jù)Rt△ACD中,AD=CD=,等腰Rt△MNC中,DN=CM=1,即可得到AN=AD﹣ND=﹣1.
(1)由旋轉(zhuǎn)可得∠ACM=60°.
又∵等腰直角三角形MNC中,∠MCN=45°,∴∠NCO=60°﹣45°=15°;
故答案為:15°;
(2)∵∠ACM=60°,CM=CA,∴△CAM為等邊三角形;
(3)連接AN并延長(zhǎng),交CM于D.
∵△MNC是等腰直角三角形,△ACM是等邊三角形,∴NC=NM=,CM=2,AC=AM=2.在△ACN和△AMN中,∵,∴△ACN≌△AMN(SSS),∴∠CAN=∠MAN,∴AD⊥CM,CD=CM=1,∴Rt△ACD中,AD=CD=,等腰Rt△MNC中,DN=CM=1,∴AN=AD﹣ND=﹣1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】P是等邊△ABC內(nèi)部一點(diǎn),∠APB、∠BPC、∠CPA的大小之比是5:6:7,將△ABP逆時(shí)針旋轉(zhuǎn),使得AB與AC重合,則以PA、PB、PC的長(zhǎng)為邊的三角形的三個(gè)角∠PCQ:∠QPC:∠PQC= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC=2,BC邊上有10個(gè)不同的點(diǎn)P1,P2,……,P10, 記(i = 1,2,……,10),那么 M1+M2+……+M10的值為( )
A. 4 B. 14 C. 40 D. 不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了測(cè)量出大樓AB的高度,從距離樓底B處50米的點(diǎn)C(點(diǎn)C與樓底B在同一水平面上)出發(fā),沿傾斜角為30°的斜坡CD前進(jìn)20米到達(dá)點(diǎn)D,在點(diǎn)D處測(cè)得樓頂A的仰角為64°,求大樓AB的高度(結(jié)果精確到1米)(參考數(shù)據(jù):sin64°≈0.9,cos64°≈0.4,tan64°≈2.1, ≈1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:如圖1,點(diǎn)M,N把線段AB分割成AM,MN和BN,若以AM,MN,BN為邊的三角形是一個(gè)直角三角形,則稱點(diǎn)M,N是線段AB的勾股分割點(diǎn).
請(qǐng)解決下列問(wèn)題:
(1)已知點(diǎn)M,N是線段AB的勾股分割點(diǎn),且BN>MN>AM.若AM=2,MN=3,求BN的長(zhǎng);
(2)如圖2,若點(diǎn)F、M、N、G分別是AB、AD、AE、AC邊上的中點(diǎn),點(diǎn)D,E是線段BC的勾股分割點(diǎn),且EC>DE>BD,求證:點(diǎn)M,N是線段FG的勾股分割點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校九年級(jí)(1)班全體學(xué)生上周末進(jìn)行體育測(cè)試的成績(jī)(滿分70分)統(tǒng)計(jì)如表:
成績(jī)(分) | 45 | 50 | 55 | 60 | 65 | 68 | 70 |
人數(shù)(人) | 2 | 6 | 10 | 7 | 6 | 5 | 4 |
根據(jù)表中的信息判斷,下列結(jié)論中錯(cuò)誤的是( )
A. 該班一共有40名同學(xué)
B. 該班學(xué)生這次測(cè)試成績(jī)的眾數(shù)是55分
C. 該班學(xué)生這次測(cè)試成績(jī)的中位數(shù)是60分
D. 該班學(xué)生這次測(cè)試成績(jī)的平均數(shù)是59分
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲進(jìn)行了10次射擊訓(xùn)練,平均成績(jī)?yōu)?/span>9環(huán),且前9次的成績(jī)(單位:環(huán))依次為:8,10,9,10,7,9,10,8,10.
(1)求甲第10次的射擊成績(jī);
(2)求甲這10次射擊成績(jī)的方差;
(3)乙在相同情況下也進(jìn)行了10次射擊訓(xùn)練,平均成績(jī)?yōu)?/span>9環(huán),方差為1.6環(huán)2,請(qǐng)問(wèn)甲和乙哪個(gè)的射擊成績(jī)更穩(wěn)定?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)分別求出代數(shù)式a2﹣2ab+b2和(a﹣b)2的值.
①其中a=,b=3;②a=5,b=3;③a=﹣1,b=2.
(2)觀察(1)中的①②③你發(fā)現(xiàn)這兩個(gè)多項(xiàng)式有什么關(guān)系,直接寫出.
(3)利用你發(fā)現(xiàn)的規(guī)律,求出1.4372﹣2×1.437×0.437+0.4372的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,6),B(b,0),且b<0,C,D分別是OA,AB的中點(diǎn),△AOB的外角∠DBF的平分線BE與CD的延長(zhǎng)線交于點(diǎn)E.
(1)求證:∠DAO=∠DOA;
(2)①若b=-8,求CE的長(zhǎng);
②若CE=+1,則b=________;
(3)是否存在這樣的b值,使得四邊形OBED為平行四邊形?若存在,請(qǐng)求出此時(shí)四邊形OBED對(duì)角線的交點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com