【題目】某商品現(xiàn)在的售價(jià)為每件60元,每個(gè)星期可賣出300件,市場調(diào)查反映:如調(diào)整價(jià)格,每漲價(jià)1元,每個(gè)星期要少賣出10件;每降價(jià)1元,每個(gè)星期可多賣出20件.已知商品進(jìn)價(jià)為每件40元,設(shè)每件商品的售價(jià)為x元(且x為正整數(shù)),每個(gè)星期的銷售量為y件.
(1)求y與x的函數(shù)關(guān)系并直接寫出自變量x的取值范圍;
(2)設(shè)每星期的銷售利潤為W,請直接寫出W與x的關(guān)系式;
(3)每件商品的售價(jià)定為多少元時(shí),每個(gè)星期可獲得最大利潤?最大利潤是多少元?
【答案】(1);
(2);(3)定價(jià)為65元時(shí)可獲得最大利潤為6250元
【解析】
(1)根據(jù)“每漲價(jià)1元,每個(gè)星期要少賣出10件;每降價(jià)1元,每個(gè)星期可多賣出20件”列出y與x的函數(shù)關(guān)系.
(2)設(shè)每星期所獲利潤為W,根據(jù)一星期利潤等于每件的利潤×銷售量得到W與x的關(guān)系式;
(3)把(2)中解析式配成拋物線的頂點(diǎn)式,利用拋物線的最值問題即可得到答案.
(1)根據(jù)題意得:漲價(jià)時(shí),y=300﹣10(x﹣60)(60≤x≤90),降價(jià)時(shí),y=300+20(60﹣x)(40≤x<60),整理得:;
(2)當(dāng)漲價(jià)時(shí),y=(x﹣40)(﹣10x+900)(60≤x≤90),當(dāng)降價(jià)時(shí),y=(x﹣40)(﹣20x+1500)(40≤x<60);
綜上所述: ;
(3)當(dāng)漲價(jià)時(shí),W=(x﹣40)(﹣10x+900)=﹣10(x﹣65)2+6250(60≤x≤90),當(dāng)x=65時(shí),W的最大值是6250;
當(dāng)降價(jià)時(shí),W=(x﹣40)(﹣20x+1500)=﹣20(x﹣57.5)2+6125 (40≤x<60),所以定價(jià)為:x=57.5(元)時(shí)利潤最大,最大值為6125元.
綜合所述,定價(jià)為65元時(shí)可獲得最大利潤為6250元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料1:
對于兩個(gè)正實(shí)數(shù),由于,所以,即,所以得到,并且當(dāng)時(shí),
閱讀材料2:
若,則 ,因?yàn)?/span>,,所以由閱讀材料1可得:,即的最小值是2,只有時(shí),即=1時(shí)取得最小值.
根據(jù)以上閱讀材料,請回答以下問題:
(1)比較大小
(其中≥1); -2(其中<-1)
(2)已知代數(shù)式變形為,求常數(shù)的值
(3)當(dāng)= 時(shí),有最小值,最小值為 (直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平行四邊形ABCD在平面直角坐標(biāo)系中的位置如圖所示,已知AB=8,AD=6,∠BAD=60°,點(diǎn)A的坐標(biāo)為(-2,0).
求:(1)點(diǎn)C的坐標(biāo);
(2)直線AC與y軸的交點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示:
(1)寫出點(diǎn)A,B,C三點(diǎn)的坐標(biāo);
(2)若△ABC各頂點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)都乘以﹣1,請你在同一坐標(biāo)系中描出對應(yīng)的點(diǎn)A',B',C',并依次連接這三點(diǎn),所得的△A'B'C'與原△ABC的位置關(guān)系是什么?
(3)在x軸上作出一點(diǎn)P,使得AP平分∠BAC.(保留作圖痕跡,不寫作法)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在兩個(gè)同心圓⊙O中,大圓的弦AB與小圓相交于C,D兩點(diǎn).
(1)求證:AC=BD;
(2)若AC=2,BC=4,大圓的半徑R=5,求小圓的半徑r的值;
(3)若ACBC等于12,請直接寫出兩圓之間圓環(huán)的面積.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2﹣2anx+an2+n+3的頂點(diǎn)P在一條定直線l上.
(1)直接寫出直線l的解析式;
(2)對于任意非零實(shí)數(shù)a,存在確定的n的值,使拋物線與x軸有唯一的公共點(diǎn),求此時(shí)n的值;
(3)當(dāng)點(diǎn)P在x軸上時(shí),拋物線與直線l的另一個(gè)交點(diǎn)Q,過點(diǎn)Q作x軸的平行線,交拋物線于點(diǎn)A,過點(diǎn)Q作y軸的平行線,交x軸于點(diǎn)B,求的值或取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)M、N分別是正五邊形ABCDE的邊BC、CD上的點(diǎn),且BM=CN,AM交BN于點(diǎn)P.
(1)求證:△ABM≌△BCN;
(2)求∠APN的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的頂點(diǎn)A,C分別在x軸和y軸上,點(diǎn)B的坐標(biāo)為(2,3)。雙曲線的圖像經(jīng)過BC的中點(diǎn)D,且與AB交于點(diǎn)E,連接DE。
(1)求k的值及點(diǎn)E的坐標(biāo);
(2)若點(diǎn)F是邊上一點(diǎn),且△FBC∽△DEB,求直線FB的解析式
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某測量小組為了測量山BC的高度,在地面A處測得山頂B的仰角45°,然后沿著坡度為i=1:的坡面AD走了200米達(dá)到D處,此時(shí)在D處測得山頂B的仰角為60°,求山高BC(結(jié)果保留根號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com