【題目】如圖,點(diǎn)M、N分別是正五邊形ABCDE的邊BC、CD上的點(diǎn),且BM=CN,AM交BN于點(diǎn)P.

(1)求證:ABM≌△BCN;

(2)求APN的度數(shù).

【答案】(1)證明見解析

(2)APN的度數(shù)為108°

【解析】

試題(1)利用正五邊形的性質(zhì)得出AB=BC,ABM=C,再利用全等三角形的判定得出即可;

(2)利用全等三角形的性質(zhì)得出BAM+ABP=APN,進(jìn)而得出CBN+ABP=APN=ABC即可得出答案

試題解析:(1)正五邊形ABCDE,

AB=BC,ABM=C,

ABM和BCN中

,

∴△ABM≌△BCN(SAS);

(2)∵△ABM≌△BCN,

∴∠BAM=CBN,

∵∠BAM+ABP=APN,

∴∠CBN+ABP=APN=ABC==108°.

APN的度數(shù)為108°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“豐收1號(hào)”小麥的試驗(yàn)田是邊長(zhǎng)為米(a>1)的正方形減去一個(gè)邊長(zhǎng)為1米的正方形蓄水池后余下的部分,“豐收2號(hào)”小麥的試驗(yàn)田是邊長(zhǎng)為()米的正方形,兩塊試驗(yàn)田里的小麥都收獲了500千克.1)哪種小麥的單位面積產(chǎn)量高?(2)高的單位面積產(chǎn)量是低的單位面積產(chǎn)量的多少倍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)解不等式,并把它的解集在數(shù)軸上表示出來.

2)解方程組

3)解方程組

4)解不等式組

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知MB=ND,∠MBA=NDC,下列哪個(gè)條件不能判定ABM≌△CDN

A.AM=CNB.AB=CD C.AMCN D.M=N

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=2x與反比例函數(shù)y= 在第一象限內(nèi)的圖象交于點(diǎn)A(m,2),將直線y=2x向下平移后與反比例函數(shù)y= 在第一象限內(nèi)的圖象交于點(diǎn)P,且△POA的面積為2.

(1)求k的值.
(2)求平移后的直線的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y= (x+2)(x﹣4)與x軸交于點(diǎn)A,B(點(diǎn)A位于點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,CD∥x軸交拋物線于點(diǎn)D,M為拋物線的頂點(diǎn).

(1)求點(diǎn)A,B,C的坐標(biāo);
(2)設(shè)動(dòng)點(diǎn)N(﹣2,n),求使MN+BN的值最小時(shí)n的值;
(3)P是拋物線上一點(diǎn),請(qǐng)你探究:是否存在點(diǎn)P,使以P,A,B為頂點(diǎn)的三角形與△ABD相似(△PAB與△ABD不重合)?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一種某小區(qū)的兩幢10層住宅樓間的距離為AC=30m,由地面向上依次為第1層、第2層、…、第10層,每層高度為3m.假設(shè)某一時(shí)刻甲樓在乙樓側(cè)面的影長(zhǎng)EC=h,太陽(yáng)光線與水平線的夾角為α

(1)用含α的式子表示h(不必指出α的取值范圍);
(2)用含α的式子表示h(不必指出α的取值范圍);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形中,分別是邊中點(diǎn),則面積等于(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線 AB x 軸,y 軸分別交于點(diǎn) A和點(diǎn) B,點(diǎn) A的坐標(biāo)為(1,0),且 2OAOB

1)求直線 AB 解析式;

2)如圖,將A O B 向右平移 3 個(gè)單位長(zhǎng)度,得到A1O1B1,求線段 O B1的長(zhǎng);

3)在(2)中AOB 掃過的面積是

查看答案和解析>>

同步練習(xí)冊(cè)答案