【題目】如圖,點(diǎn)在邊上,點(diǎn)為邊上一動(dòng)點(diǎn),連接關(guān)于所在直線對(duì)稱,點(diǎn)分別為的中點(diǎn),連接并延長(zhǎng)交所在直線于點(diǎn),連接.當(dāng)為直角三角形時(shí),的長(zhǎng)為_________

【答案】

【解析】

當(dāng)為直角三角形時(shí),存在兩種情況:

當(dāng)時(shí),如圖1,根據(jù)對(duì)稱的性質(zhì)和平行線可得:,根據(jù)直角三角形斜邊中線的性質(zhì)得:,最后利用勾股定理可得的長(zhǎng);

當(dāng)時(shí),如圖2,證明是等腰直角三角形,可得

解:當(dāng)為直角三角形時(shí),存在兩種情況:

當(dāng)時(shí),如圖1

關(guān)于所在直線對(duì)稱,

,,

點(diǎn),分別為,的中點(diǎn),

、的中位線,

,

,

,

,

,

,

中,是斜邊的中點(diǎn),

由勾股定理得:,

;

當(dāng)時(shí),如圖2,

,

關(guān)于所在直線對(duì)稱,

,

是等腰直角三角形,

;

綜上所述,的長(zhǎng)為4;

故答案為:4;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一批單價(jià)為20元的商品,若每件按30元的價(jià)格銷售時(shí),每天能賣出60件;若每件按50元的價(jià)格銷售時(shí),每天能賣出20件,假定每天銷售件數(shù)y(件)與銷售價(jià)格x(元/件)滿足y=kx+b.
(1)求y與x滿足的函數(shù)關(guān)系式(不要求寫出x的取值范圍);
(2)在不考慮其他因素的情況下,每件商品銷售價(jià)格定為多少元時(shí)才能使每天獲得的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】元宵節(jié)將至,我校組織學(xué)生制作并選送50盞花燈,共包括傳統(tǒng)花燈、創(chuàng)意花燈和現(xiàn)代花燈三大種.已知每盞傳統(tǒng)花燈需要35元材料費(fèi),每盞創(chuàng)意花燈需要33元材料費(fèi),每盞現(xiàn)代花燈需要30元材料費(fèi).

1)如果我校選送20盞現(xiàn)代花燈,已知傳統(tǒng)花燈數(shù)量不少于5盞且總材料費(fèi)不得超過1605元,請(qǐng)問選送傳統(tǒng)花燈、創(chuàng)意花燈的數(shù)量有哪幾種方案?

2)當(dāng)三種花燈材料總費(fèi)用為1535元時(shí),求選送傳統(tǒng)花燈、創(chuàng)意花燈、現(xiàn)代花燈各幾盞?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A是反比例函數(shù) 的圖象上的一個(gè)動(dòng)點(diǎn),連接OA,若將線段O A繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到線段OB,則點(diǎn)B所在圖象的函數(shù)表達(dá)式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)四位數(shù),記千位上和百位上的數(shù)字之和為x,十位上和個(gè)位上的數(shù)字之和為y,如果xy,那么稱這個(gè)四位數(shù)為“和平數(shù)”.

例如:2635,x2+6y3+5,因?yàn)?/span>xy,所以2635是“和平數(shù)”.

(1)請(qǐng)判斷:3562   (填“是”或“不是”)“和平數(shù)”.

(2)直接寫出:最小的“和平數(shù)”是   ,最大的“和平數(shù)”是   ;

(3)如果一個(gè)“和平數(shù)”的個(gè)位上的數(shù)字是千位上的數(shù)字的兩倍,且百位上的數(shù)字與十位上的數(shù)字之和是14,求滿足條件的所有“和平數(shù)”.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠A=B=ACB,CDABC的高,CE是∠ACB的角平分線,求∠DCE的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在△ABC,∠1∠2,GAD的中點(diǎn),BG的延長(zhǎng)線交AC于點(diǎn)E,FAB上的一點(diǎn)CFAD垂直,AD于點(diǎn)H,則下面判斷正確的有( 。

AD是△ABE的角平分線;BE是△ABD的邊AD上的中線;

CH是△ACD的邊AD上的高;AH是△ACF的角平分線和高

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O為四邊形ABCD的外接圓,O為圓心,若∠BCD=120°,AB=AD=2,則⊙O的半徑長(zhǎng)為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的一元二次方程(k+1)x2+2(k+1)x+k﹣2=0有實(shí)數(shù)根,則k的取值范圍在數(shù)軸上表示正確的是(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案