【題目】如圖,已知函數(shù)y=(x>0)的圖象經(jīng)過點A、B,點B的坐標(biāo)為(2,2).過點A作AC⊥x軸,垂足為C,過點B作BD⊥y軸,垂足為D,AC與BD交于點F.一次函數(shù)y=ax+b的圖象經(jīng)過點A、D,與x軸的負半軸交于點E
(1)若AC=OD,求a、b的值。
(2)若BC∥AE,求BC的長。
【答案】
(1)
解;∵點B(2,2)在函數(shù)y=(x>0)的圖象上,
∴k=4,則y=,
∵BD⊥y軸,∴D點的坐標(biāo)為:(0,2),OD=2,
∵AC⊥x軸,AC=OD,∴AC=3,即A點的縱坐標(biāo)為:3,
∵點A在y=的圖象上,∴A點的坐標(biāo)為:(,3),
∵一次函數(shù)y=ax+b的圖象經(jīng)過點A、D,
∴,
解得:
(2)
解;設(shè)A點的坐標(biāo)為:(m,),則C點的坐標(biāo)為:(m,0),
∵BD∥CE,且BC∥DE,
∴四邊形BCED為平行四邊形,
∴CE=BD=2,
∵BD∥CE,∴∠ADF=∠AEC,
∴在Rt△AFD中,tan∠ADF==,
在Rt△ACE中,tan∠AEC==,
∴=,
解得:m=1,
∴C點的坐標(biāo)為:(1,0),則BC=.
【解析】(1)首先利用反比例函數(shù)圖象上點的坐標(biāo)性質(zhì)得出k的值,再得出A、D點坐標(biāo),進而求出a,b的值;
(2)設(shè)A點的坐標(biāo)為:(m,),則C點的坐標(biāo)為:(m,0),得出tan∠ADF==,tan∠AEC==,進而求出m的值,即可得出答案.
此題考查了一次函數(shù)與反比例函數(shù)交點問題,即通過點坐標(biāo)求參數(shù)和解析式,通過點坐標(biāo)和三角函數(shù)的應(yīng)用求坐標(biāo)和線段長。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點M和N,再分別以M、N為圓心,大于 MN的長為半徑畫弧,兩弧交于點P,連結(jié)AP并延長交BC于點D,則下列說法中正確的個數(shù)是( )
①AD是∠BAC的平分線;②∠ADC=60°;③點D在AB的中垂線上;④S△DAC:S△ABC=1:3.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l與⊙O相離,OA⊥l于點A,OA=5.OA與⊙O相交于點P,AB與⊙O相切于點B,BP的延長線交直線l于點C.
(1)試判斷線段AB與AC的數(shù)量關(guān)系,并說明理由;
(2)若PC=2 ,求⊙O的半徑和線段PB的長;
(3)若在⊙O上存在點Q,使△QAC是以AC為底邊的等腰三角形,求⊙O的半徑r的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,⊙O過AC的中點D,DE為⊙O的切線.
(1)求證:DE⊥BC;
(2)如果DE=2,tanC= ,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,CD是高,CE是中線,CE=CB,點A、D關(guān)于點F對稱,過點F作FG∥CD,交AC邊于點G,連接GE.AC=18,BC=12,則△CEG的周長為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在20km越野賽中,甲乙兩選手的行程y(單位:km)隨時間x(單位:h)變化的圖象如圖所示,根據(jù)圖中提供的信息,有下列說法:①兩人相遇前,甲的速度小于乙的速度;②出發(fā)后1小時,兩人行程均為10km;③出發(fā)后1.5小時,甲的行程比乙多3km;④甲比乙先到達終點.其中正確的有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由大小兩種貨車,3輛大車與4輛小車一次可以運貨22噸,2輛大車與6輛小車一次可以運貨23噸.請根據(jù)以上信息,提出一個能用方程(組)解決的問題,并寫出這個問題的解答過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課題小組從某市20000名九年級男生中,隨機抽取了1000名進行50米跑測試,并根據(jù)測試結(jié)果繪制了如下尚不完整的統(tǒng)計圖表.
等級 | 人數(shù)/名 |
優(yōu)秀 | a |
良好 | b |
及格 | 150 |
不及格 | 50 |
解答下列問題:
(1)a= ,b=
(2)補全條形統(tǒng)計圖
(3)試估計這20000名九年級男生中50米跑達到良好和優(yōu)秀等級的總?cè)藬?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是圓O的切線,切點為B,直線AO交圓O于C、D兩點,CD=2,∠DAB=30°,動點P在直線AB上運動,PC交圓O于另一點Q.
(1)當(dāng)點P運動到使Q、C兩點重合時(如圖1),求AP的長;
(2)點P在運動過程中,有幾個位置(幾種情況)使△CQD的面積為?(直接寫出答案)
(3)當(dāng)△CQD的面積為,且Q位于以CD為直徑的上半圓,CQ>QD時(如圖2),求AP的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com