【題目】如圖,在△ABC中,∠A=90°,BC的垂直平分線(xiàn)交BC于E,交AC于D,且AD=DE
(1)求證:∠ABD=∠C;
(2)求∠C的度數(shù).
【答案】(1)證明見(jiàn)解析 (2)30°
【解析】
(1)依據(jù)線(xiàn)段垂直平分線(xiàn)的性質(zhì)可知DB=DC,故此可得到∠C=∠DBC,然后利用角平分線(xiàn)的性質(zhì)定理的逆定理可得到BD平分∠ABC,故此可證得∠ABD=∠C;
(2)依據(jù)∠C+∠ABC=90°求解即可.
(1)證明:∵DE⊥BC,∠A=90°即DA⊥AB且AD=DE,
∴BD平分∠ABC.
∴∠ABD=∠DBC.
∵DE垂直平分BC,
∴BD=CD.
∴∠DBC=∠C.
∴∠ABD=∠C.
(2)∵∠ABC+∠C=90°,∠ABD=∠CBD=∠C,
∴3∠C=90°.
∴∠C=30°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,A(a,0)是x軸正半軸上一點(diǎn),C是第四象限一點(diǎn),CB⊥y軸,交y軸負(fù)半軸于B(0,b),且(a-3)2+|b+4|=0,S四邊形AOBC=16.
(1)求C點(diǎn)坐標(biāo);
(2)如圖2,設(shè)D為線(xiàn)段OB上一動(dòng)點(diǎn),當(dāng)AD⊥AC時(shí),∠ODA的角平分線(xiàn)與∠CAE的角平分線(xiàn)的反向延長(zhǎng)線(xiàn)交于點(diǎn)P,求∠APD的度數(shù).
(3)如圖3,當(dāng)D點(diǎn)在線(xiàn)段OB上運(yùn)動(dòng)時(shí),作DM⊥AD交BC于M點(diǎn),∠BMD、∠DAO的平分線(xiàn)交于N點(diǎn),則D點(diǎn)在運(yùn)動(dòng)過(guò)程中,∠N的大小是否變化?若不變,求出其值,若變化,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,(1)∠BED與∠CBE是直線(xiàn)________,________被直線(xiàn)________所截形成的________角;
(2)∠A與∠CED是直線(xiàn)________,________被直線(xiàn)________所截形成的________角;
(3)∠CBE與∠BEC是直線(xiàn)________,________被直線(xiàn)________所截形成的________角;
(4)∠AEB與∠CBE是直線(xiàn)________,________被直線(xiàn)________所截形成的________角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的兩邊AB和AC的垂直平分線(xiàn)分別交BC于D,E,若∠BAC+∠DAE=150°,則∠BAC的度數(shù)是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某車(chē)間有16名工人,每人每天可加工甲種零件5個(gè)或乙種零件4個(gè).在這16名工人中,一部分人加工甲種零件,其余的加工乙種零件.已知每加工一個(gè)甲種零件可獲利16元,每加工一個(gè)乙種零件可獲利24元.若此車(chē)間一共獲利1440元,求這一天有幾個(gè)工人加工甲種零件,幾個(gè)工人加工乙種零件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某社區(qū)超市第一次用6000元購(gòu)進(jìn)甲、乙兩種商品,其中乙商品的件數(shù)比甲商品件數(shù)的倍多15件,甲、乙兩種商品的進(jìn)價(jià)和售價(jià)如下表:(注:獲利=售價(jià)﹣進(jìn)價(jià))
甲 | 乙 | |
進(jìn)價(jià)(元/件) | 22 | 30 |
售價(jià)(元/件) | 29 | 40 |
(1)該超市購(gòu)進(jìn)甲、乙兩種商品各多少件?
(2)該超市將第一次購(gòu)進(jìn)的甲、乙兩種商品全部賣(mài)完后一共可獲得多少利潤(rùn)?
(3)該超市第二次以第一次的進(jìn)價(jià)又購(gòu)進(jìn)甲、乙兩種商品,其中甲商品的件數(shù)不變,乙商品的件數(shù)是第一次的3倍;甲商品按原價(jià)銷(xiāo)售,乙商品打折銷(xiāo)售,第二次兩種商品都銷(xiāo)售完以后獲得的總利潤(rùn)比第一次獲得的總利潤(rùn)多180元,求第二次乙商品是按原價(jià)打幾折銷(xiāo)售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在我市美化工程招標(biāo)時(shí),有甲、乙兩個(gè)工程隊(duì)投標(biāo).經(jīng)測(cè)算:甲隊(duì)單獨(dú)完成這項(xiàng)工程需要60天;若由甲隊(duì)先做20天,剩下的工程由甲、乙合做24天可完成.
(1)乙隊(duì)單獨(dú)完成這項(xiàng)工程需要多少天?
(2)甲隊(duì)施工一天,需付工程款3.5萬(wàn)元,乙隊(duì)施工一天需付工程款2萬(wàn)元.若該工程計(jì)劃在70天內(nèi)完成,在不超過(guò)計(jì)劃天數(shù)的前提下,是由甲隊(duì)或乙隊(duì)單獨(dú)完成該工程省錢(qián)?還是由甲乙兩隊(duì)全程合作完成該工程省錢(qián)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義[x]表示不超過(guò)實(shí)數(shù)x的最大整數(shù),如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函數(shù)y=[x]的圖象如圖所示,則方程[x]= x2的解為( )#N.
A.0或
B.0或2
C.1或
D.
或﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程(k﹣1)x2﹣2x+1=0有實(shí)數(shù)根,則k的取值范圍是( )
A.k≤﹣2
B.k≤2
C.k≥2
D.k≤2且k≠1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com