【題目】已知О是直線(xiàn)AB上的一點(diǎn),,OE平分.
(1)在圖(a)中,若,求的度數(shù);
(2)在圖(a)中,若,直接寫(xiě)出的度數(shù)(用含的代數(shù)式表示)
(3)將圖(a)中的繞頂點(diǎn)O順時(shí)針旋轉(zhuǎn)至圖(b)的位置.
①探究和的度數(shù)之間的關(guān)系,直接寫(xiě)出結(jié)論;
②在的內(nèi)部有一條射線(xiàn)OF,滿(mǎn)足:,試確定與的度數(shù)之間的關(guān)系,并說(shuō)明理由.
【答案】(1)15°;(2);(3)①;②,理由詳見(jiàn)解析.
【解析】
(1)由已知可求出∠BOC=180°-∠AOC=150°,再由∠COD是直角,OE平分∠BOC求出∠DOE的度數(shù);
(2)由(1)中的證明方法可得出結(jié)論∠DOE=∠AOC,從而用含的代數(shù)式表示出∠DOE的度數(shù);
(3)①由∠COD是直角,OE平分∠BOC可得出∠COE=∠BOE=90°-∠DOE,則得∠AOC=180°-∠BOC=180°-2∠COE=180°-2(90°-∠DOE),從而得出∠AOC和∠DOE的度數(shù)之間的關(guān)系;
②設(shè),,根據(jù)①中結(jié)論以及已知,得出,從而得出結(jié)論.
(1)∵,,
∴.
∵OE平分,
∴.
∵,
∴
(2).
∵,,
∴.
∵OE平分,
∴
∵,
∴.
(3)①.
∵OE平分,
∴.
∵,∴.
∵,
∴.
∴.
即.
②.
理由:設(shè),,
由①可知,.
∴.
∵,
∴.
∴.
∵,
∴.
∴.
即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某文化用品商店用1 000元購(gòu)進(jìn)一批“晨光”套尺,很快銷(xiāo)售一空;商店又用1 500元購(gòu)進(jìn)第二批該款套尺,購(gòu)進(jìn)時(shí)單價(jià)是第一批的倍,所購(gòu)數(shù)量比第一批多100套.
(1)求第一批套尺購(gòu)進(jìn)時(shí)單價(jià)是多少?
(2)若商店以每套4元的價(jià)格將這兩批套尺全部售出,可以盈利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線(xiàn)y=ax2+bx+3(a≠0)經(jīng)過(guò)點(diǎn)A(﹣1,0),B(,0),且與y軸相交于點(diǎn)C.
(1)求這條拋物線(xiàn)的表達(dá)式;
(2)求∠ACB的度數(shù);
(3)設(shè)點(diǎn)D是所求拋物線(xiàn)第一象限上一點(diǎn),且在對(duì)稱(chēng)軸的右側(cè),點(diǎn)E在線(xiàn)段AC上,且DE⊥AC,當(dāng)△DCE與△AOC相似時(shí),求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,從數(shù)軸上的原點(diǎn)開(kāi)始,先向左移動(dòng)2cm到達(dá)A點(diǎn),再向左移動(dòng)4cm到達(dá)B點(diǎn),然后向右移動(dòng)10cm到達(dá)C點(diǎn).
(1)用1個(gè)單位長(zhǎng)度表示1cm,請(qǐng)你在題中所給的數(shù)軸上表示出A、B、C三點(diǎn)的位置;
(2)把點(diǎn)C到點(diǎn)A的距離記為CA,則CA=______cm;
(3)若點(diǎn)B以每秒3cm的速度向左移動(dòng),同時(shí)A、C點(diǎn)以每秒lcm、5cm的速度向右移動(dòng),設(shè)移動(dòng)時(shí)間為t(t>0)秒,試探究CA﹣AB的值是否會(huì)隨著t的變化而改變?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形是平行四邊形,點(diǎn)在邊上運(yùn)動(dòng)(點(diǎn)不與點(diǎn),重合)
(1)如圖1,當(dāng)點(diǎn)運(yùn)動(dòng)到邊的中點(diǎn)時(shí),連接,若平分,證明:;
(2)如圖2,過(guò)點(diǎn)作且交的延長(zhǎng)線(xiàn)于點(diǎn),連接.若,,,在線(xiàn)段上是否存在一點(diǎn),使得四邊形是菱形?若存在,請(qǐng)說(shuō)明當(dāng)發(fā),點(diǎn)分別在線(xiàn)段,上什么位置時(shí)四邊形是菱形,并證明;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠APB=30°,圓心在PB上的⊙O的半徑為1cm,OP=3cm,若⊙O沿BP方向平移,當(dāng)⊙O與PA相切時(shí),圓心O平移的距離為_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過(guò)點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線(xiàn);
(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見(jiàn)解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線(xiàn)與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線(xiàn);
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OE∥AB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得與的長(zhǎng),然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線(xiàn);
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線(xiàn)y=ax2+ax+b(a≠0)與直線(xiàn)y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線(xiàn)的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線(xiàn)與拋物線(xiàn)的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線(xiàn)y=﹣2x與拋物線(xiàn)在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱(chēng),現(xiàn)將線(xiàn)段GH沿y軸向上平移t個(gè)單位(t>0),若線(xiàn)段GH與拋物線(xiàn)有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于有理數(shù)a,b,定義一種新運(yùn)算“⊙”,規(guī)定a⊙b=|a+b|+|a﹣b|.
(1)計(jì)算2⊙(﹣3)的值;
(2)當(dāng)a,b在數(shù)軸上的位置如圖所示時(shí),化簡(jiǎn)a⊙b;
(3)已知(a⊙a)⊙a=8+a,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,對(duì)角線(xiàn)BD平分∠ABC,過(guò)點(diǎn)A作AE∥BD,交CD的延長(zhǎng)線(xiàn)于點(diǎn)E,過(guò)點(diǎn)E作EF⊥BC,交BC延長(zhǎng)線(xiàn)于點(diǎn)F.
(1)求證:四邊形ABCD是菱形;
(2)若∠ABC=45°,BC=2,求EF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com