【題目】如圖,在矩形紙片ABCD中,AB=4,AD=3,折疊紙片使DA與對角線DB重合,點A落在點A′處,折痕為DE,則A′E的長是

【答案】
【解析】解:∵四邊形ABCD為矩形, ∴∠A=90°,
在Rt△ABD中,AB=4,AD=3,
∴BD= =5,
∵折疊紙片使DA與對角線DB重合,點A落在點A′處,折痕為DE,
∴DA′=DA=3,EA′=EA,∠DA′E=∠A=90°,
∴BA′=BD﹣DA′=5﹣3=2,
設(shè)A′E=x,則EA=x,BE=4﹣x,
在Rt△BEA′中,
∵A′E2+BA′2=BE2
∴x2+22=(4﹣x)2 , 解得x= ,
即A′E的長為
故答案為
由矩形的性質(zhì)得∠A=90°,在Rt△ABD中,根據(jù)勾股定理計算出BD=5,再根據(jù)折疊的性質(zhì)得DA′=DA=3,EA′=EA,∠DA′E=∠A=90°,則BA′=BD﹣DA′=2,設(shè)A′E=x,則EA=x,BE=4﹣x,在Rt△BEA′中,根據(jù)勾股定理得到x2+22=(4﹣x)2 , 然后解方程即可.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】Rt△ABC中,∠C=90°,AC=20cm,BC=15cm,現(xiàn)有動點P從點A出發(fā),沿AC向點C方向運動,動點Q從點C出發(fā),沿線段CB也向點B方向運動,如果點P的速度是4cm/秒,點Q的速度是2cm/秒,它們同時出發(fā),當有一點到達所在線段的端點時,就停止運動.設(shè)運動時間為t秒.求:

(1)當t=3秒時,這時,P,Q兩點之間的距離是多少?

(2)若△CPQ的面積為S,求S關(guān)于t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解答題
(1)如圖1,已知△ABC,以AB,AC為邊分別向△ABC外作等邊△ABD和等邊△ACE,連結(jié)BE,CD,請你完成圖形(尺規(guī)作圖,不寫作法,保留作圖痕跡),并證明:BE=CD;

(2)如圖2,利用(1)中的方法解決如下問題:在四邊形ABCD中,AD=3,CD=2,∠ABC=∠ACB=∠ADC=45°,求BD的長.

(3)如圖3,四邊形ABCD中,∠CAB=90°,∠ADC=∠ACB=α,tanα= ,CD=5,AD=12,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點M、N分別為ABCD的邊CD、AB的中點,連接AM、CN.
(1)證明:AM=CN;
(2)過點B作BH⊥AM于點H,交CN于點E,連接CH,判斷線段CB、CH的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,直徑CD⊥弦AB,則下列結(jié)論中正確的是(
A.AD=AB
B.∠BOC=2∠D
C.∠D+∠BOC=90°
D.∠D=∠B

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計算正確的是
A.3a+2b=5ab
B.(-3a2b)2=-6a4b2
C. =4
D.(ab)2a2b2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一般情況下不成立,但有些數(shù)可以使得它成立,例如:ab=0.我們稱使得成立的一對數(shù)a,b為“相伴數(shù)對”,記為(ab).

(1)若(1,b)是“相伴數(shù)對”,求b的值;

(2)若(m,n是“相伴數(shù)對”,其中m≠0,求;

(3)若(m,n)是“相伴數(shù)對”,求代數(shù)式m﹣[4m﹣2(3n﹣1)]的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,給出了平面直角坐標系及格點AOB.(頂點是網(wǎng)格線的交點)

(1)畫出將AOB沿y軸翻折得到的AOB1,則點B1的坐標為_________.

(2)畫出將AOB沿射線AB1方向平移2.5個單位得到的A2O2B2,則點A2的坐標為_______.

(3)請求出AB1B2的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù) ,下列結(jié)論錯誤的是(
A.圖象經(jīng)過點(1,1)
B.當x<0時,y隨著x的增大而增大
C.當x>1時,0<y<1
D.圖象在第一、三象限

查看答案和解析>>

同步練習冊答案