【題目】如圖,ABCAC=BC,CCD//AB.若AD平分CAB,則下列說法錯誤的是(

A. BC=CD

B. BOOC=ABBC

C. CDO≌△BAO

D.

【答案】C

【解析】

A.由角平分線的定義可得出∠CAD=BAD,利用“兩直線平行,內(nèi)錯角相等”可得出∠CDA=BAD,進而可得出∠CAD=CDA,由等角對等邊結合AC=BC可得出BC=CD,選項A正確;

B.由CDAB可得出△AOB∽△DOC,利用相似三角形的性質(zhì)結合DC=BC,可得出BOOC=ABBC,選項B正確;

C.由△CDO∽△BAO,且沒有相等的對應邊可得出,選項C錯誤;

D.由三角形的面積公式可得出,結合相似三角形的性質(zhì)及平行線的性質(zhì)可得出,選項D正確.

A.∵AD平分∠CAB,∴∠CAD=BAD

CDAB,∴∠CDA=BAD,∴∠CAD=CDA,∴CD=CA=BC,故選項A正確;

B.∵CDAB,∴∠CDO=BAO,∠DCO=ABO,∴△AOB∽△DOC,∴,故選項B正確;

C.∵△CDO∽△BAO,且沒有相等的對應邊,∴無法證出△CDO≌△BAO,故選項C錯誤;

D.∵△AOC與△COD同高,∴

∵△CDO∽△BAO,∴

AD平分∠CAB,∴∠CAD=BAD

CDAB,∴∠CDA=BAD,∴∠CAD=CDA,∴AC=CD

AC=BC,∴CD=BC,∴,故選項D正確.

故選C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】我們定義:有一組對角相等的四邊形叫做等對角四邊形

1)如圖,四邊形ABCD內(nèi)接于O,點ECD的延長線上,且AEAD.證明:四邊形ABCE等對角四邊形

2)如圖,在等對角四邊形ABCD中,DABBCD53°,B90°sin53°≈,cos53°≈tan53°≈.

3)如圖,在RtACD中,ACD90°,DAC30°CD4,若四邊形ABCD等對角四邊形,且BD,則BD的最大值是  .(直接寫出結果)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BEO的直徑,點A和點D是⊙O上的兩點,過點A作⊙O的切線交BE延長線于點.

(1)若∠ADE=25°,求∠C的度數(shù);

(2)若AB=AC,CE=2,求⊙O半徑的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C地在A地的正東方向,因有大山阻隔,由A地到C地需繞行B地,已知B地位于A地北偏東67°方向,距離A520km,C地位于B地南偏東30°方向,若打通穿山隧道,建成兩地直達高鐵,求A地到C地之間高鐵線路的長.(結果保留整數(shù))

(參考數(shù)據(jù):sin67°≈,cos67°≈,tan67°≈,≈1.73)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水果批發(fā)商場經(jīng)銷一種高檔水果,如果每千克盈利10元,每天可售出500千克.經(jīng)市場調(diào)查發(fā)現(xiàn),在進貨價不變的情況下,若每千克漲價1元,日銷售量將減少20千克.

1)現(xiàn)該商場要保證每天盈利6 000元,同時又要顧客得到實惠,那么每千克應漲價多少元?

2)若該商場單純從經(jīng)濟角度看,每千克這種水果漲價多少元,能使商場獲利最多?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,過點PPAPB,分別與以OA為半徑的半圓切于A,B,延長AO交切線PB于點C,交半圓與于點D

1)若PC=5,AC=4,求BC的長;

2)設DC:AD=1:2,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為響應學雷鋒、樹新風、做文明中學生號召,某校開展了志愿者服務活動,活動項目有戒毒宣傳”、“文明交通崗”、“關愛老人”、“義務植樹”、“社區(qū)服務等五項,活動期間,隨機抽取了部分學生對志愿者服務情況進行調(diào)查,結果發(fā)現(xiàn),被調(diào)查的每名學生都參與了活動,最少的參與了1項,最多的參與了5項,根據(jù)調(diào)查結果繪制了如圖所示不完整的折線統(tǒng)計圖和扇形統(tǒng)計圖.

(1)被隨機抽取的學生共有多少名?

(2)在扇形統(tǒng)計圖中,求活動數(shù)為3項的學生所對應的扇形圓心角的度數(shù),并補全折線統(tǒng)計圖;

(3)該校共有學生2000人,估計其中參與了4項或5項活動的學生共有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形ABCD在第一象限內(nèi),邊BCx軸平行,AB兩點的縱坐標分別為3,1,反比例函數(shù)y的圖象經(jīng)過A,B兩點,則點D的坐標為( )

A. (21,3)B. (2+13)

C. (21,3)D. (2+1,3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】勾股定理有著悠久的歷史,它曾引起很多人的興趣.英國佩里加(HPerigal,18011898)用“水車翼輪法”(圖1)證明了勾股定理.該證法是用線段QX,ST,將正方形BIJC分割成四個全等的四邊形,再將這四個四邊形和正方形ACYZ拼成大正方形AEFB(圖2).若AD,tanAON,則正方形MNUV的周長為(  )

A. B. 18C. 16D.

查看答案和解析>>

同步練習冊答案