周六上午8:00小明從家出發(fā),乘車1小時(shí)到郊外某基地參加社會實(shí)踐活動(dòng),在基地活動(dòng)2.2小時(shí)后,因家里有急事,他立即按原路以4千米/時(shí)的平均速度步行返回.同時(shí)爸爸開車從家出發(fā)沿同一路線接他,在離家28千米處與小明相遇。接到小明后保持車速不變,立即按原路返回.設(shè)小明離開家的時(shí)間為x小時(shí),小名離家的路程y (干米) 與x (小時(shí))之間的函致圖象如圖所示,
(1)小明去基地乘車的平均速度是________千米/小時(shí),爸爸開車的平均速度應(yīng)是________千米/小時(shí);
(2)求線段CD所表示的函斂關(guān)系式;
(3)問小明能否在12:0 0前回到家?若能,請說明理由:若不能,請算出12:00時(shí)他離家的路程,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
某市為了增強(qiáng)學(xué)生體質(zhì),全面實(shí)施“學(xué)生飲用奶”營養(yǎng)工程.某品牌牛奶供應(yīng)商提供了原味、草莓味、菠蘿味、香橙味、核桃味五種口味的牛奶提供學(xué)生飲用.某中學(xué)為了了解學(xué)生對不同口味牛奶的喜好,對全校訂購牛奶的學(xué)生進(jìn)行了隨機(jī)調(diào)查(每盒各種口味牛奶的體積相同),繪制了如圖兩張不完整的人數(shù)統(tǒng)計(jì)圖:
(1)本次被調(diào)查的學(xué)生有 名;
(2)補(bǔ)全上面的條形統(tǒng)計(jì)圖1,并計(jì)算出喜好“菠蘿味”牛奶的學(xué)生人數(shù)在扇形統(tǒng)計(jì)圖2中所占圓心角的度數(shù);
(3)該校共有2400名學(xué)生訂購了該品牌的牛奶,牛奶供應(yīng)商每天只為每名訂購牛奶的學(xué)生配送一盒牛奶.要使學(xué)生每天都喝到自己喜好的口味的牛奶,牛奶供應(yīng)商每天送往該校的牛奶中,草莓味要比原味多送多少盒?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,點(diǎn)A是反比例函數(shù)y=(x>0)的圖象上任意一點(diǎn),AB∥x軸交反比例函數(shù)y=- 的圖象于點(diǎn)B,以AB為邊作□ABCD,其中C、D在x軸上,則S□ABCD為( )
A.2 B.3 C.4 D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在一單位為1的方格紙上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜邊在x軸上、斜邊長分別為2,4,6,…的等腰直角三角形.若△A1A2A3的頂點(diǎn)坐標(biāo)分別為
A1(2,0),A2(1,﹣1),A3(0,0),則依圖中所示規(guī)律,A2014的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
將一直角三角板與兩邊平行的紙條如圖放置.已知∠1=30°,則∠2的度數(shù)為( )
A.30° B.45° C.50° D.60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,將邊長為2cm的正方形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到AB’C’D’的位置,旋轉(zhuǎn)角為30°,則C點(diǎn)運(yùn)動(dòng)到C′點(diǎn)的路徑長為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知二次函數(shù)y=ax2+bx+c(a>0)的圖像與x軸的一個(gè)交點(diǎn)為A(1,0),另一個(gè)交點(diǎn)為B,與y軸的交點(diǎn)為C(0,-2).
(1)b=,點(diǎn)B的坐標(biāo)為( , ) ;(均用含a的代數(shù)式表示)
(2)若a<2,試證明二次函數(shù)圖像的頂點(diǎn)一定在第三象限;
(3)若a=1,點(diǎn)P是拋物線在x軸下方的一個(gè)動(dòng)點(diǎn)(不與C重合),連結(jié)PB,PC,設(shè)所得△PBC的面積為S,試求S的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,點(diǎn)M,N分別是正五邊形ABCDE的邊BC,CD上的點(diǎn),且BM=CN,AM交BN于點(diǎn)P.
(1)求證:AM=BN;
(2)求∠APN的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com