【題目】如圖,在等邊△ABC中,D為BC邊上一點,E為AC邊上一點,且∠ADE=60°,BD=4,CE= ,則△ABC的面積為( )
A.8
B.15
C.9
D.12
【答案】C
【解析】解:∵△ABC是等邊三角形,∠ADE=60°, ∴∠B=∠C=∠ADE=60°,AB=BC,
∵∠ADB=∠DAC+∠C,∠DEC=∠ADE+∠DAC,
∴∠ADB=∠DEC,
∴△ABD∽△DCE,
∴ ,
∵BD=4,CE= ,
設AB=x,則DC=x﹣4,
∴ ,
∴x=6,
∴AB=6,
過點A作AF⊥BC于F,
在Rt△ABF中,AF=ABsin60°=6× =3 ,
∴S△ABC= BCAF= ×6×3 =9 .
故選C.
首先由△ABC是等邊三角形,可得∠B=∠C=∠ADE=60°,又由三角形外角的性質(zhì),求得∠ADB=∠DEC,即可得△ABD∽△DCE,又由BD=4,CE= ,根據(jù)相似三角形的對應邊成比例,即可求得AB的長,則可求得△ABC的面積.
科目:初中數(shù)學 來源: 題型:
【題目】小國同學的父親參加旅游團到某地旅游,準備買某種禮物送給小國.據(jù)了解,沿旅游線路依次有A、B、C三個地點可以買到此種禮物,其質(zhì)量相當,價格各不相同,但不知哪家更便宜.由于時間關(guān)系,隨團旅游車不會掉頭行駛.
(1)若到A處就購買,寫出買到最低價格禮物的概率;
(2)小國同學的父親認為,如果到A處不買,到B處發(fā)現(xiàn)比A處便宜就馬上購買,否則到C處購買,這樣更有希望買到最低價格的禮物.這個想法是否正確?試通過樹狀圖分析說明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一個邊長分別為6、8、10的直角三角形,請設計出一個有一條邊長為8的直角三角形,使這兩個直角三角形能夠拼成一個等腰三角形.
(1)畫出4種不同拼法(周長不等)的等腰三角形;
(2)分別求出4種不同拼法的等腰三角形的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,飛機沿水平方向(A、B兩點所在直線)飛行,前方有一座高山,為了避免飛機飛行過低.就必須測量山頂M到飛行路線AB的距離MN.飛機能夠測量的數(shù)據(jù)有俯角和飛行距離 (因安全因素,飛機不能飛到山頂?shù)恼戏絅處才測飛行距離),請設計一個求距離MN的方案,要求:
(1)指出需要測量的數(shù)據(jù)(用字母表示,并在圖中標出);
(2)用測出的數(shù)據(jù)寫出求距離MN的步驟.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了更好地保護美麗如畫的邛海濕地,西昌市污水處理廠決定先購買A,B兩種型號的污水處理設備共20臺,對邛海濕地周邊污水進行處理.每臺A型污水處理設備12萬元,每臺B型污水處理設備10萬元.已知1臺A型污水處理設備和2臺B型污水處理設備每周可以處理污水640 t,2臺A型污水處理設備和3臺B型污水處理設備每周可以處理污水1 080 t.
(1)求A,B兩種型號的污水處理設備每周每臺分別可以處理污水多少噸.
(2)經(jīng)預算,市污水處理廠購買設備的資金不超過230萬元,每周處理污水的量不低于4 500 t,請你列舉出所有購買方案,并指出哪種方案所需資金最少,最少是多少.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖(1),AB∥CD,點P在AB,CD外部,若∠B=50°,∠D=25°,則∠BPD= °
(2)如圖(2),AB∥CD,點P在AB,CD內(nèi)部,則∠B,∠D,∠BPD之間有何數(shù)量關(guān)系?證明你的結(jié)論.
(3)在圖(2)中,將直線AB繞點B按逆時針方向旋轉(zhuǎn)一定角度交直線CD于點M,如圖(3),若∠BPD=90°,∠BMD=40°,求∠B+∠D的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知D,E,F分別在△ABC的邊BC,AB,AC上,且DE∥AF,DE=AF,將FD延長至G,使FG=2DF,連接AG,則ED,AG互相平分嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】以下四種沿AB折疊的方法中,不一定能判定紙帶兩條邊線a,b互相平行的是( )
A. 如圖1,展開后測得∠1=∠2
B. 如圖2,展開后測得∠1=∠2且∠3=∠4
C. 如圖3,測得∠1=∠2
D. 如圖4,展開后再沿CD折疊,兩條折痕的交點為O,測得OA=OB,OC=OD
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com