【題目】如圖,已知AB∥CD,AD平分∠BDC.
(1)求證:∠BAD=∠BDA;
(2)若AD⊥AC,∠C=700,求∠B的度數(shù).
【答案】(1)見(jiàn)解析;(2)140°.
【解析】
(1)由AB∥CD可得∠BAD=∠CDA,由AD平分∠BDC可得∠CDA=∠BDA,兩者結(jié)合即可得到∠BAD=∠BDA;
(2)由AD⊥AC可得∠DAC=90°,結(jié)合∠C=70°可得∠CDA=20°,結(jié)合AD平分∠BDC可得∠BDC=40°,再結(jié)合AB∥CD即可得到∠B=140°.
(1)∵AB∥CD,
∴∠BAD=∠ADC,
∵AD平分∠BDC,
∴∠BDA=∠ADC,
∴∠BAD=∠BDA;
(2)∵AB∥CD
∴∠B+∠BDC=180°,
∵AD⊥AC,∠C=70°,
∴∠ADC=180°-70°-90°=20°,
∵AD平分∠BDC,
∴∠BDC=2∠ADC=40°,
∴∠B=180°-∠BDC=180°-40°=140°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙兩名運(yùn)動(dòng)員進(jìn)行射擊選撥賽,每人射擊10次,其中射擊中靶情況如下表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 第七次 | 第八次 | 第九次 | 第十次 | |
甲 | 7 | 10 | 8 | 10 | 9 | 9 | 10 | 8 | 10 | 9 |
乙 | 10 | 7 | 10 | 9 | 9 | 10 | 8 | 10 | 7 | 10 |
(1)選手甲的成績(jī)的中位數(shù)是__________分;選手乙的成績(jī)的眾數(shù)是__________分;
(2)計(jì)算選手甲的平均成績(jī)和方差;
(2)已知選手乙的成績(jī)的方差是1.4,則成績(jī)較穩(wěn)定的是哪位選手?(直按寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩家櫻桃采摘園的品質(zhì)相同,銷售價(jià)格也相同,“五一期間”,兩家均推出了優(yōu)惠方案,甲采摘園的優(yōu)惠方案是:游客進(jìn)園需購(gòu)買50元的門票,采摘的草莓六折優(yōu)惠;乙采摘園的優(yōu)惠方案是:游客進(jìn)園不需購(gòu)買門票,采摘園的草莓超過(guò)一定數(shù)量后,超過(guò)部分打折優(yōu)惠.優(yōu)惠期間,設(shè)某游客的草莓采摘量為x(千克),在甲采摘園所需總費(fèi)用為y1(元),在乙采摘園所需總費(fèi)用為y2(元),圖中折線OAB表示y2與x之間的函數(shù)關(guān)系.
(1)甲、乙兩采摘園優(yōu)惠前的草莓銷售價(jià)格是每千克元;
(2)求y1、y2與x的函數(shù)表達(dá)式;
(3)在圖中畫出y1與x的函數(shù)圖象,若某人想在“五一期間”采摘櫻桃25千克,那么甲、乙哪個(gè)采摘園較為優(yōu)惠?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, , ,以點(diǎn)為頂點(diǎn)、為腰在第三象限作等腰.
()求點(diǎn)的坐標(biāo).
()如圖, 為軸負(fù)半軸上一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)沿軸負(fù)半軸向下運(yùn)動(dòng)時(shí),以為頂點(diǎn), 為腰作等腰,過(guò)作軸于點(diǎn),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中, , 為線段上一點(diǎn), , 為射線上一點(diǎn),且,連接.
()如圖,
①依題意補(bǔ)全圖形.
②若, ,求的長(zhǎng).
()如圖,若,連接并延長(zhǎng),交于點(diǎn),求證: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在圓心角為90°的扇形OAB中,半徑OA=2cm,C為 的中點(diǎn),D、E分別是OA、OB的中點(diǎn),則圖中陰影部分的面積為cm2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB∥CD,F(xiàn)為CD上一點(diǎn),∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度數(shù)為整數(shù),則∠C的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,∠A,∠B,∠C的對(duì)邊分別為a、b、c,下列說(shuō)法中錯(cuò)誤的是( )
A.如果∠C-∠B=∠A,則△ABC是直角三角形,且∠C=90;
B.如果,則△ABC是直角三角形,且∠C=90;
C.如果(c+a)( c-a)=,則△ABC是直角三角形,且∠C=90;
D.如果∠A:∠B:∠C=3:2:5,則△ABC是直角三角形,且∠C=90.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分)如圖,在直角坐標(biāo)系xOy中,A(﹣1,0),B(3,0),將A,B同時(shí)分別向上平移2個(gè)單位,再向右平移1個(gè)單位,得到的對(duì)應(yīng)點(diǎn)分別為D,C,連接AD,BC.
(1)直接寫出點(diǎn)C,D的坐標(biāo):C ,D ;
(2)四邊形ABCD的面積為 ;
(3)點(diǎn)P為線段BC上一動(dòng)點(diǎn)(不含端點(diǎn)),連接PD,PO.求證:∠CDP+∠BOP=∠OPD.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com